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1. SUMMARY OF ACCOMPLISHMENTS

~ The major emphases of the research proposal submitted 1o the Office of Nawal
Research in 1986 were in the development of new techniques fur cuherent sypnal
identification using multiple sensor elements and performance anahne  of

eigenstructure-based high resolution methods for direction finding.

This research report concerns primarily with new developments (since the last
report date) in the detection of signals from measurements made at the outputs of 2
set of spatially deployed sensor elements. Three key results that have heen odtained
during this investigation is reported in section 2 with all details. To be specific. the
are:

In the context of coherent signal classification, a spatial smoothing scheinc firss
suggested by Evans et al., and subsequently studied by Shan et al ., is further imvests
gated. It is proved in section 2.1 that by making use of a set of forward and comples
conjugated backward subarrays simultaneously, it is always possible to estimate anv A
directions of arrival using at most 3K /2 sensor elements. This is achieved bv creating
a smoothed array output covariance matrix that is structurally identical to a covariance
matrix in some noncoherent situation. By incorporating the eigenstructure-based
techniques on this smoothed covariance matrix, it then becomes possible to correctly

identify all directions of arrivals irrespective of their correlation.

Section 2.2 presents a detailed asymptotic analysis of a class of high resolution
estimators for resolving correlated and coherent plane waves in noise. These estima-
tors are in turn constructed from certain eigenvectors associated with spatially
smoothed (or vnsmoothed) covariance matrices generated from a uaiform array. The
analysis is first carried out for the smoothed case, and from this the conventional
MUSIC (unsmoothed) scheme follows as a special case. Independent of the total

number of sources present in the scene, the variance of the conventional MUSIC esti-




Halr sdng Be e sttnal angley o vwown [0 be 2ero within a first-order approxima-
Sons Buiier e ae osprosaoen ty the smouthed case are used to obtain a resolu-
won Neasiond for o soferent, aguapomcrted plane wave sources in white noise, and
B sl e sompiead s e oftased ff two uncorrelated, equipowered plane wave

b LR

To vk eei of ons ssowicdge the amaban presented in section 2.2 is new and
Sonid urn oue s e ewtremely aetul foe the performance evaluation of almost all

g et e Mibned e frngae,

Pooaily s welmgue for setumatung the directions of arrival of multiple signals
daizang e gener dueed sngemvaluen avaoualed with certain matrices generated from
B sagml sosprace sigeruegtors w peopomed 10 section 2.3, This is carried out by
eerving 3 weil anows propesty of the swignal subspace; i.e., in presence of uncorre-
arad and ddentical wemor mome, the wtwpace spanned by the true direction vectors
somnendes wet cte org spuamed s the crgemvectors corresponding to all, except the
smailest et of sepeating ogernarac of the array output covariance matrix. Further,
atlising the fevules 0 cexton 22 a funt-order petturhation analysis is carried out to
eviiuate *he performange of thus wheme, when the array output cross-covariances are
estmatad from the data Inoats least favorable configuration, unlike the MUSIC
scheme, the bras assogated with the directons-of -arrival estimator for this scheme in
a womsonree scene © choan to he zern and the vaniance to be nonzero within a first-
otder approumation. In sts mwst favorable configuration, both bias and variance are
shown to he nonzern fne the same source scene. Using these variance expressions,
s27uton thresholds are obtained for two closely spaced sources in an equipowered
scene The supenar performance of this algorithm in its most favorable configuration

i1s also shewn tn be in agreement with actual simulation results.

A list of publications or ginated under this contract is outlined in the next section.
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TECHNICAL REPORT

2.1 Forward/Backward Spatial Smoothing Techniques for

Coherent Signal Identification

2.1.1 Introduction

In recent years, considerable effort has been spent in developing high resolution
techniques for estimating the directions of arrival of multiple signals using multiple
sensors. These methods [1]-[4], in general, exploit specific eigenstructure properties
of the sensor array output covariance matrix and are known to yield high resolution
even when the signal sources are partially correlated. However, when some of the sig-
nals are perfectly correlated (coherent), as happens, for example, in multipath propa-
gation, these techniques encounter serious difficulties. Several alternatives have been
proposed [5]—-[11] to take care of this situation, of which the spatial smoothing
scheme first suggested by Evans et al. [9], [10] and extensively studied by Shan et al.
[11], [12] is specially noteworthy. Their solution is based on a preprocessing scheme
that partitions the total array of sensors into subarrays and then generates the average
of the subarray output covariance matrices. Shan et al. have shown that when this
average of subarray covariance matrices is used in conjunction with the
eigenstructure-based multiple signal classification technique developed by Schmidt
[3], in the case of independent and identical sensor noise, it is possible to estimate all
directions of arrival irrespective of their degree of correlation. However, this
forward-only smoothing scheme makes use of a larger number of sensor elements
than the conventional ones, and in particular requires 2K sensor elements to estimate

any K directions of arrival.

In this report, we analyze an improved spatial smoothing scheme -called the

forward/backward smoothing scheme — and prove that at most [3K /2](1) elements are
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enough to estimate any K directions of arrival. In addition to the forward subarsavs,
this scheme makes use of complex conjugated backwiurd subarravs of the ofigunal
array to achieve superior performance. In this context, it t+ istrucing 1o hate the
observations of Evans et al [10], "The combined effect of spatial smaothung and
forward/backward averaging cannot increase an array’s ditection finding capatulin
beyond [2M /3] coherent signals (with M representing the numbsct of schsor cic
ments).” While this statement is correct and coincides with the baund = 113 §aane
et al. do not provide a proof for it. A special case of the genctal situstion whecte the
multipath coefficients are treated to be real, 1 praned in {13 However thr oo
unrealistic assumption, as in practice all multipath cae®icacnts w0 e it cany

plex numbers and in that case it is necessan to reason differgrth

For clarily of prcsenlatinm section 212 deaty wtk COEv e te 'y cobie et ot

tion and proves that to estimate amy K coberent ditectiorn of seena s ® e e o
have an array of [3K/2] sensors. The ptw\! L T i P T I R Y ZATRTTE

the Appendix.

2.1.2 Direction Finding in a Coherent Favironaent
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dresction vector and Bemce (12w nnt e ahle 1o estimate amv truc arrival angles.
Tme cracial roie paved M the rensrguiandy of R n thie diccussion has prompted
Fvams er F 0 ard subsegientls Shan ot gl toantroduce a preprocessing scheme [9] -
[UI] which guarantees fu'l rank for the equivalent R in (8) even when the signals are
all coherent. This preprocessing spatial smonthing scheme starts by dividing a uni-
form linear array with M <sensors into uniformly overlapping subarrays of size M (see

Fig. 1). let x,"(r) stand for the output of the " subarray for ! = 1,2, --- L 4
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M, -M +1, where L denotes the total number of these forward subarrays. Using (2)

- (6) we have
T
x,!(t)é[.r,(r),x,”(!).'--,x“M_l(t)] =AB “lue) +n,(r) , 1<I<K13)

where B' "' denotes the ({ - l)"' power of the K xK diagonal matrix

B =diag v, v, " y] v =exp(~jw) , i =12 K. (14)

[

Then, the covariance matrix of the " subarray is given by
R/ = & [x/(0)( x,’u))'] =AB 'R (B THA'+ AL (15)

Following [9] - [11] define the forward spatially smoothed covariance matrix, R/ as

the sample mean of the foraard subarray conanance matrices and this gives

) Vod o ¢ By
R SILR‘.‘Q»\R;A'oaI_ (16)

L)
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Thus, if L=M_ -M+1>K or equivalently M , >M +K -1, the smoothed source
covariance matrix R‘{ is nonsingular and R’ has exactly the same form as the covari-
ance matrix for a noncoherent case. Therefore the conclusions in (9) will hold good
for R in (16), and as pointed out by Shan et al., one can successfully apply the eigen-
structure methods to this smoothed covariance matrix regardless of the coherence of
the signals. However, in this case, the number of sensor elements M_ must be at least
(M +K -1), and recalling from (9) that the size M of each subarray must also be at
least K + 1, it follows that the minimum number of sensors needed is 2K compared to
K +1 for the conventional one. In what follows we present the improved spatial
smoothing scheme that makes use of the forward and appropriate backward subarrays
to reduce the required number of sensor elements to [3K /2].

Towards this purpose, additional L backward subarrays are generated from the
same set of sensors by grouping elements at {M_,M_-1, ---, M -M+1} to form
the first backward subarray and elements at {M_-1,M_ -2, ---,M_-M} to form
the second one, etc. (see Fig. 1). Let x,b(t) denote the complex conjugate of the out-
put of the 1" backward subarray for! = 1,2, -+, L, where L as before denotes the

total number (M =M + 1) of these subarrays. Thus

X r (oM, -1 .
(1) = l’;l'_l_‘(l).t‘.,'_,(l)."‘.I;_,.l(!)] =AR '[B u(t)] +4,(t), 1<idD

: , . : h .
where B s as defined in (14). The covariance matrix of the I backward subarray is

grven by
R =FE(x v on) = AR’_’RG (B YA+ 60 (20)

with
R 28 7 Fretev o0 1m '""n)'zR_‘"'_”R;(B’N”_”)’ (21)

.
. R e . . h
As hefore, de ~¢ *Re¢ spata’™ smoethed hackward suharray covariance matrix R as

the sampie mea~ of these $haT an (AT aTee maltices. e,
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b

R b o

L
- T YR =aR’Al+ L 22)
=1

In a competely coherent environment R, is given by (10) and in that case using (10) in

(21) R, simplifies to

R =58, (23)

where
5=[6,6, .61 16 =ary, O, k=12 K (24)
with v, k = 1,2, -+, K as defined in (14). Finally, using (23) the backward-

. . b . .
smoothed source covariance matrix R | is given by

bal & -t SN N
Ru=Ll§__)lB R (B = {EE (25)
where
E=[6B58%, -, B"'5| =FV (26)
with V as in (18) and
F = diag [6,,6, "+, 6 ). (27)

Reasoning as before it is easy to see that the backward spatially smoothed covariance
matrix R® will be of full rank so long as R: is nonsingular, and this is guaranteed
whenever L >K. Again, it follows that the backward subarray averaging scheme also
requires at most 2K sensor elements to estimate the directions of arrival of K sources

irrespective of their coherence.

It remains to show that by simultaneous use of the forward and backward subar-
ray averaging schemes, it is possible to further reduce the number of extra sensor ele-
ments. To see this, following Evans et al. [10], define the forward/backward smoothed

) _ b
covariance matrix R as the mean of RI and R ; 1.e.




b
ﬁ:R,;R . (28)

Using (16), (17), (22) and (25) in (28) we have
R=A[i(cc'+EE')JA'+a"l=ARUA’+02| (29)

with

. 1 1
R, = 3 [CC'+EE" = 5 GG (30)

Here

G = [a,Ba,Ba, -, B "a,5,B6, B%, -, B-"'4]

=[Dv | FV]=D[V | HV]£DgG,, (1)

with D, V as in (18) and
H = diag [e, €, " reg ) 5 & =6, /0 , k =12, K. (32)

We will now prove that the modified source covariance matrix Ru given by (30) will be
nonsingular regardless of the coherence of the K signal sources so long as 2L >K,
provided that whenever equality holds among some of the members of the set

{e. } f -1 in (32), the largest subset with equal entries must at most be of size L.

To appreciate this restriction, first consider the case where allg, , k = 1,2, ---,
K are equal. In that case it is easy to see that G, and hence Ru will be of rank
min(L ,K) irrespective of the backward smoothing. However, in practice this equality
condition almost never occurs. This is because e, in (1), which represents the com-
plex attenuation of the k™ source with respect to the reference source, is a signal pro-
th

perty, and 6, in (24), which is a function of the interelement phase delay of the &

source with respect to the reference element, is mainly an array geometry property.
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Thus, 1 an aactual wtustwe alle, & = 1,2, -, K will be distinct and the simultane-
ous equality votuhition fof all of them makes it an almost never occurring event. From
thewe arguenents it also follows that the above festnctions on the equality among some
of the ¢, 1 will altiont alexy be watnfcd To be speaific with regard to these restric-

oy, we will avacrtue that

¢ #¢ focam o =12 L.and) s L e) L +2- - K. (33)

A speaial case of the general stuation, where alla, & = 1,2, -+ K, in (1) are
real, 18 treated in [13] In that case using (24) and (32) 1n (31) it 1s casy to see that G,
s a Vandermonde matew with dustiect columns and hence 1s of rank K so long as
2L >K . This, however, s an unrcahstic assumption, as in practice, all a5 will be
invariably complex numbers and in that case it 1s necessary to argue differently as fol-
lows.

From (30), flu will be nonsingular so long as G is of full row rank, and using (31)
this is further equivalent to having full row rank for G,. Clearly, for G (or G;) to have
full row rank it is necessary that 2L >K and with L = A -AM +1, this reduces to
2M  >2M +K -2, Again recalling that in the presence of K signals the size M of each
subarray must be at least K’ + 1, it follows that the number of sensors M_ needed must
satisfy 2 >3K or, equivalently, the min‘mum number of sensors must be at least

[3K /2]. To see that this requirement is also sufficient, consider the quadratic product
y'G,Gly = y'vVly + y'HVV'H'y (34)

where y is any arbitrary K x 1 vector. We wiil show that
y'G,Gly >0 (35)
for any y #0, thus proving the positive-definite property of G, G(: or Ru. Clearly (35)

needs to be demonstrated only for a typical y, € N(V') , the null space of v In that

case V'y0 = O and hence the first term in (34) reduces to zero. To prove our claim, it
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is enough to show that for such a typical y,, H' ¥, does not belong to N(Vt ). Since the
Vandermonde structured matrix V' is of full row rank L, the dimension of N(Vt) is
K-L. Let v, ., ¥/, """, Vg be a set of lirearly independent basis vectors for
N(Vt ). With respect to the basis vectors for the K-dimensional space, these null

space basis vectors can always be chosen such that [14],
T

v, = [vl,,vz,,---,vu,o,--,o, 1,0,,0] . (36)
( In (36) the 1 is at the 1" location.) These v,, I = L +1,L +2, -+, K are linearly
independent and, moreover, for any j € {L+1,L +2,---,K}, using the diagonal
nature of H it is also easy to see that H! v; is linearly independent of the remaining v,,
! =L+1, -+, K, I #j. Further the pair v; and H'vj,j =L+1,L+2 - K, is
also linearly independent of each other. To see this note that because of the full row
rank property of V!, at least one of the vy,i =1,2, -+, L in (36) must be nonzero

for every l. Let v, j be such an entry in v Then the minor formed by the i:,h and j"'

rows of the matrix [vjl H'vl. ] has the form

=V (ej‘ - e‘-: ) (37)

and is nonzero from (33). Thus the matrix [",-| Htvj ] is of rank 2. This proves the
linear independence of Vi and H' v;. From the above discussion it follows that H' \ is
linearly independent of v].,j =L+1,L+2 ---, K and hence H'vl. ¢ N(Vt hJj =
L+1,L+2 ---, K. Now foranyy, € N(Vt)we have

K

= % kv, (38)
j=L +1
which gives
t X t
Hy,= ¥ ijvj. (39)

j=L +1
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Since all k; cannot be zero in (39), it follows that H'y,¢ N(V') and hence
V'H'y, # 0. This proves our claim and establishes that R, will be nonsingular under
the mild restrictions in (33). In that case the eigenvalues of R satisfy Xlz XzZ e

She DA = AL, = 0t A, = o°. Consequently, as in (9), the eigenvectors

corresponding to equal eigenvalues are orthogonal to the direction vectors associated

with the true directions of arrival; i.e.
Bla(w,)=0,i =K+1,K+2, -, M, k =12, -+ K (40)

Here ﬁl, [92, et 5&{ are the eigenvectors of R corresponding to the eigenvalues Xl,

Ay, o, Ay, TESpEctively.

To summarize, we have proved that so long as the number of sensor elements is
at least [3K /2], (with K representing the number of signal sources present in the
scene), it is almost always possible to estimate all arrival angles irrespective of the sig-
nal correlations by simultaneous use of the forward and backward subarray averaging
scheme. Since the smoothed covariance matrix R in (28) has exactly the same form as
the covariance matrix for some noncoherent situation as in (8), the eigenstructure-
based techniques can be applied to this smoothed covariance matrix, irrespective of

the coherence of the signals, to successfully estimate their directions of arrival.

The Appendix extends the proof for the forward/backward smoothing scheme to
a mixed source scene consisting of partially correlated signals with complete coher-

ence among some of them.

2.1.3 Simulation Results

In this section simulation results are presented to illustrate the performance of
the forward/backward spatial smoothing scheme and to compare it with the conven-

tional eigenstructure-based techniques [3).

Fig. 2 represents a coherent source scene where the reference signal arriving

from 70° undergoes multipath reflection, resulting in three additional coherent arrivals
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along 45°, 115° and 127°. A six-element uniform array is used to receive these signals.
The input signal-to-noise ratio (SNR) of the reference signal is S dB, and the attenua-
tion coefficients of the three coherent sources are taken to be (0.4,0.8), (-0.3, -0.7)
and (0.5, —0.6), respectively. In the notation a = (a,b), here a and b represent the
real and imaginary parts, respectively, of the complex attenuation coefficient . Three
hundred data samples are used to estimate the array output covariance matrix using
the standard maximum likelihood procedure. The application of the conventional
eigenstructure method [3] to this covariance matrix resulted in Fig. 2.a. However, first
applying the forward/backward spatial smoothing scheme with two forward and two
backward (L =2) subarrays of five (M =5) sensors each, and then reapplying the
eigenstructure technique on the smoothed covariance matrix R resulted in Fig. 2.b. All
four directions of arrival can be clearly identified and the improvement in perfor-
mance in terms of resolvability, irrespective of the signal coherence, is also visible in

this case.

2.1.4 Conclusions

This report reexamines the problem of locating the directions of arrival of
coherent signals and in that context a spatial smoothing scheme, first introduced by
Evans et al. and analyzed by Shan et al., is further investigated. It is proved here that
by simultaneous use of a set of forward and complex conjugated backward subarrays,
it is always possible to estimate any K directions of arrival using at most [3K /2] sen-
sor elements. This is made possible by creating a smoothed array output covariance
matrix that is structurally identical to a covariance matrix in some noncoherent situa-
tion, thus enabling one to correctly identify all directions of arrival by incorporating
the eigenstructure-based techniques 3] on this smoothed matrix. This is a consider-
able saving compared to the forward-only smoothing scheme [11] that requires as
many extra sensor elements as the total number of coherent signals present in the

scene.




-18 -

Appendix

Coherent and Correlated Signal Scene

We will demonstrate here that the forward/backward smoothing scheme dis-
cussed in section 2.1.2 readily extends to the general situation where the source scene
consists of K +J signals u,(¢), u,(t), -, up(t), up ,((t), -, ug ,,(t), of which the
first K signals are completely coherent and the last (J +1) signals are partially corre-
lated. Thus the coherent signals are partially correlated with the remaining set of sig-
nals. Further, the respective arrival angles are assumed to be 4,, 8,, -+, 6., 8, .

“*, 8¢, ;- As before, the signals are taken to be uncorrelated with the noise and the
noise is assumed to be identical and uncorrelated from element to element. With sym-
bols as defined in the text and using (2), the output x,(¢) of the i * sensor element at

time ¢ in this case can be written as

K K+J
xO) =u,(t) T a exp(-jli ) + 35 (1) exp(=j i =1wy) +n, (1),
k-l k-l

i=12"",M. (A.1)
With x(t) as in (3), this gives
x(1) = Av(t) + n(r), (A.2)
where
A = VM [a(u)). a(wy), s alwg) 8w, e alwg )] (A3)

witha(w, ) ;k =1,2,- - ,K +J as defined in (7) and
v(t) @ [ul(t) | uz(t)]. (A.4)
Here

.
u,(t) = [ul(t),uz(t)."',ux(r)] =u,(a (A.5)
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with a as in (10) and
T
u0) = [ug (OO gy O] (A6)

Following (13)-(17), (19)-(20), (25) and (28), the forward/backward smoothed

covariance matrix R in this case can be written as

R = ARA' + o1, (A7)

where

R, = % f; B (R, +R)(B 7). (A8)
(=]

It remains to show that I'lo is of full rank irrespective of the coherency among some of

the arrivals. Here

. B, O
B=|, B, (A9)
where
B, =diag [v,,v,, """, v ] (A.10)
and
B, =diag (v, ;. Vg2 """ Vs (A.11)

withy, .k =1,---,K +J as given by (14) and

A t Rll RlZ
R, 2E[v)V() = | | . (A.12)
R, Rp
Using (A.4) - (A.6), it is easy to see that
R, = E[u(t)u()] = ad' (A.13)
where a is as before and E [ |u (¢)|?] = 1. Similarly
R, = E[u,(t)u)(r)] = av' (A.14)

with
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I’ (A.15)

’

Y=[wr Y

where
(A.16)

% QE[u (Oug, (], i =1,2,T,

and
Ry, = E[uy(t)ul(r)]. (A.17)

From the partially correlated assumption among the later J signals, it follows that

their correlation matrix R,, is of full rank and hence it has the representation

Ry, = AA'

where A is again a full rank matrix of size / xJ. In a similar manner following (21), R

(A18)

can be written as

' TR, R
. ~(M, -1) . ~(M, -1
R0=B( R.,'[B )] =[ .:l .u]. (A-19)
R Ry
and proceeding as before,
R, =66 (A.20)
with & as in (24) and
= .t
R, =67 (A.21)
with
=iyl (A22)

where
-(.V ‘l) .
* ° i=12-.7J. (A.23)

ﬁj = ’7,' VK +i (]
Here ~; is as defined in (A.16) and v, ,. is obtained by extending the definition in
(14). Further,

il (A.24)

=X

-(M,-1) -(M,-1)

Ry, =B, Ry, (B,

) =




with

where A again o a foll rank it of azee J o) Wtk (AY)

umphilics to

]
2|~

where

and G, satisfies

N ]
‘

Liﬂ._L . ﬁ“nll_ )

H $ ' Lo
R, - ﬁ_».ill!._ )

A

{ , .
Ve R, e R R

Qe

{

v B,

ie:

t t f
G,G] = G,G, + G,G].

"R, e R_.)(B

(A2

(A2 i (AB) o

(A.26)

(A27)

(A.28)

(A.29)

(A.30)




;

Define
c.[6 ©
L
Then
R, = 57 GE" (A32)

Clearly the rank of flo is the same as that of G. An examination of (A.27) shows that
G, G: is the average of the source covariance matrix corresponding to the completely
coherent situation (see (31)) and hence from the resuit derived in section 2.1.2, it fol-
lows that G, Gl' is of full rank K so long as L>{K /2]. Now it remains to show that G,
is also of full row rank J , which together with (A.31) implies that G and hence l'lo is of
full rank K +J. From (A.28) - (A.30) we have

t t t
G,G! = G,G! - G,G!
I S PR T IC S Sy JUS P S N
=Y B, AV -47)(B, )+ 3 B, (AL -3%)(B, ) (A.33)
[=1 =1

In the first summation here, A and 4 are matrices of ranks J and 1 respectively and
hence the matrix (AAT —"7"7T‘ ~ at least of rank J —1. Once again, resorting to the
argument used in establishing (35) in section 2.1.2, it follows that each summation and
hence G, is of full row rank J so long as L >1. This establishes the nonsingularity of
flo for L >[K /2]. As a result, the smoothed covariance matrix R in (A.7) has struc-
turally the same form as the covariance matrix for some noncoherent set of K +J sig-
nals. Hence, the eigenstructure-based techniques can be applied to this smoothed
matrix irrespective of the coherence of the original set of signals to successfully esti-

mate their directions of arrival. This completes the proof.
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Fig. 2 Dircction finding in a cohcrent scene. A six-clement uniform array reccives signals from four
cohcrent sources with multipath cocfficients (0.4,0.8), (1.0.), (-0.3.-0.7) and (0.5,-0.6). The arrival
angles of the four cohcrent signals are 45°,70°, 115° and 127°. Input SNR of the reference signal is §
JdB. Thrce hundred data samples arc used to estimate the covariance matrix. (a) P(4) using the

conventional MUSIC scheme. (b) P (6) using the forward /backward smoothing scheme.
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2.2 Performance Analysis of MUSIC-Type High Resolution Estimators

for Direction Finding in Correlated and Coherent Scenes

2.2.1 Introduction

Eigenstructure-based techniques that yield high resolution have been a topic of
great interest in array signal processing since the well-known works of Pisarenko [1],
Schmidt (2] and others [3]-[8]. These methods, in general, utilize certain eigenstruc-
ture properties resulting from the special structure of the sensor array output covari-
ance matrix for planai wavefronts [2] to generate spectral peaks (or equivalently spec-
tral nulls) along the actual directions of arrival and are known to yield high resolution
even when some of the sources are partially correlated. In coherent situations, such as
multipath propagation, a direct application of these techniques results in ambiguity,
and specific modifications have been suggested to remedy this problem [9]-[11]. Of
these, the spatial-smoothing scheme, originally suggested by Evans et al. [9] and stu-
died by Shan et al. [10], is based on a preprocessing scheme that for a uniform array,
partitions the total array of sensors into subarrays and then generates the average of
the subarray output covariance matrices. Further, in the case of independent and
identical sensor noise, this mairix is shown to be structurally equivalent to that in some
correlated scene thereby making it amiable to the above mentioned methods. How-
ever, this smoothing scheme - we call it the forward-only smoothing scheme - requires
2K sensor elements to estimate K coherent directions of arrival. In contrast to this, a
modified scheme also proposed by Evans et al. - we call it the forward/backward
smoothing scheme - uses both forward and backward subarrays for averaging and is

shown to require only [3K /2]“) sensors to estimate any K directions of arrival [9, 12].

When the exact ensemble array output covariances are used, all these methods
result in unbiased values (i.e., zero for the null spectrum) along the true arrival angles
irrespective of signal-to-noise ratios (SNRs) and angular separations of sources.

(1) The symbol [x] stands for the integer part of x.
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However, when these covariances are estimated from a finite number of independent
snapshots, these techniques exhibit deviations from their ensemble average values.
These deviations depend on the specific scheme under consideration together with the
SNRs and other signal and array specifications. All this taken together determine the

resolution capacity of the technique under consideration.

This report presents a performance analysis of these smoothing techniques when
covariances estimated from a large sample size are used in place of their ensemble
averages. The analysis for the general forward/backward scheme is carried out first
while the forward-only scheme and the conventional unsmoothed (MUSIC) scheme

are derived as special cases.

This report is organized as follows: For the sake of completeness, the forward-
only and the forward/backward smoothing schemes are summarized in section 2.2.2.
Using results derived in Appendix A, section 2.2.3 presents the first-order approxima-
tions to the mean and variance of the null spectrum corresponding to the
forward/backward, the forward-only and the standard MUSIC schemes. The bias
expression in the case of the forward/backward scheme is used to obtain a resolution
threshold for two completely coherent, equipowered plane wave sources in white
noise; and this result is compared to the resolution threshold obtained by Kaveh et al.
[13] for two uncorrelated, equipowered plane wave sources in white noise. Finally, in
Appendix B, several identities that are found to be useful for performance analysis are

developed.

2.2.2 Problem Formulation

Let a uniform array consisting of M sensors receive signals from K narrowband
sources u(£), uy(t), -+, uKo(t ) Ug wpp " ug (t), of which the first K signals are
completely coherent and the last (K -K +1) signals are partially correlated. Thus the
coherent signals are partially correlated with the remaining set of signals. Further, the

respective arrival angles are assumed tobe 6,,0,, - -, 0 , 0, ,,, * -, 0 with respect
0 n

to the line of the array. At any instant, the first K signals u,(t), u,(t), - - g (1),
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are phase-delayed, amplitude-weighted replicas of one of them - say, the first - and

hence
uk(t)=aku1(t), k =12 ---,K (1)

where o represents the complex attenuation of the K signal with respect to the first
signal, u,(¢). Using complex signal representation, the received signal x; (¢) at the i"
sensor can be expressed as

x(t) = f} u (t)exp(—jn(i —1)cosf, ) + n(t). (2)
k=1

Here the interelement distance is taken to be half the wavelength common to all sig-
nals and n, (¢) represents the additive noise at the i * sensor. It is assumed that the sig-
nals and noises are stationary, zero mean circular Gaussian @ independent random
processes, and further, the noises are assumed to be independent and identical
between themselves with common variance o°. Rewriting (2) in common vector nota-

tionand withw, =wcosf ; k =1,2, ---,K, wehave

T
x(t) = [xl(t),xz(t), ---,xM(t)] = Au(t) + n() 3)

where
T T

u(t) = [ @uy0), - ug@®)] L n) = [r @ mp) m O] @)

and

A = VM [a(uy), alwy), -+, a(ug)| (3)
Here a(w, ) is the normalized direction vector associated with the arrival angle 6, ; i.e.,

(2) A complex random vector z is defined to be circular Gaussian if its real part x and
imaginary part y arc jointly Gaussian and their joint covariance matrix has the form [14,17]

e LIy -2lw V)
Y i =2lw v
where z=x+jy When z has zcro mcan, its covariance matrix is given by

E (') 2E[(x+ j9) (¢ - jy")| = V + jW. Clearly, E(2") = O. Here onwards T and 1
represent the transpose and complex conjugate transpose, repectively.
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T
aw) = 7= [Lep(-ju) ep(=i2), - ep(=j(M-Dw,)] . (6)

Notice that A is an MxK Vandermonde-type matrix (M >K) of rank K and from our

assumptions it follows that the array output covariance matrix has the form
R = E [x(t)x(t)] = AR, Al + &1 (7)

The source covariance matrix R, = E [u(t)ut(t)] remains as nonsingular so long as
the sources are at most partially correlated. In that case AR, Alis also of rank K and
hence, if A >A> -+ >),, and B, B, ***,B) are the eigenvalues and the

corresponding eigenvectors of R respectively, i.e.,

M
R=3 B84, (®)
=1

then the above rank property implies that A, ,; = A, ., = -+ =X, = o® and conse-
quently Bla(w,) = 0,i =K +1,K+2, -+ ,M ;k = 1,2, -+ K. Hence the nulls of
QO (w) given by

0w = 5 18lawlt=1-% I8 aw) )
k=1

k=K +1

correspond to the actual directions of arrival. However, when some signals are

coherent as in (1), R, is singular and the above conclusions are no longer true.

To circumvent this crucial missing rank problem, in the forward-only spatial
smoothing scheme[9, 10] a set of overlapping forward subarrays are generated by
dividing a large uniform array with M sensors into sets of size M. Let x,f (¢) stand for
the output of the " subarray for/ = 1,2, -, L QMO —-M +1 where L denotes the
total number of these forward subarrays. Then the covariance matrix of the / " subar-

ray is given by
R/ =E [x,f(r)(x,f(z))'] = AR/ A+ o (10)

. . . . t
where R‘{ ; is the source covariance matrix (singular) of the / ' forward subarray and
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the average of these subarray covariance matrices has the form
L L
% R -A[% D) R‘{’,] A+ A18AR/AT + AL (11)
=1 =l

Here R‘{ represents the smoothed source covariance matrix of rank p(R‘{) =K-
K,+min(K ,L). Thusif L =M -M +1>K  the smoothed source covariance matrix
is nonsingular and Rf has exactly the same form as the covariance matrix in some
noncoherent situation.

To improve upon the number of extra elements needed for smoothing, a set of L
additional backward subarrays are generated in [9, 12] from the same set of sensors by
grouping elements at M_,M_-1, ---,M_ -M +1 to form the first backward subar-
ray, etc. Let x,b (t) denote the complex conjugate of the output of the I" backward
subarray and R,b the corresponding subarray covariance matrix for / = 1,2, --+, L.

Then
R = E [x'() (x’()'] = AR? A" + &1 (12)

where R: ; is the source covariance matrix of the 1" backward subarray and the aver-

age of the subarray covariance matrices has the form

L L
%2 ,”=A[%g R:’,]At+ozléAR:Af+ozl. (13)
=1 =1

Combining the forward and backward smoothing schemes together, we define the

forward/backward (f/b) smoothed covariance matrix as

t

1 .. -
éE(R +R,) = AR, A’+al—lgl,\ﬁﬁ (14)
where the smoothed source covariance matrix
- 1 b
R, = 3(R[ + R} (15)

can be shown [12] to have rank p(R, ) = A -K, + min(K_,2L). So, for R, to possess

S ]
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full rank, 2L >K , Or 2M >2M +K —-2. Recalling that in a coherent situation
(K=K,), M must be at least K +1, it follows that the minimum number of sensors
must be at least [3K'/2]). More precisely, the above conclusion is valid, provided that
whenever equality holds among some of the member of the set {¢, },f_l with g, =
(e /ey ) exp(j (M, - 1)w, ), the largest subset with equal entries is at most of size L

[12]). Under these conditions ﬁu is of rank K and hence the eigenvalues of R satisfy

AZA> o 2h > A = o= =4y = o> Consequently, as in (9) the nulls of
O (w) given by
sy Mo ot 2 _ X a4t 2
Qw = ¥ |Baw|" =1-3F |B,a(w)| (16)
k=K +1 k=1

correspond to the actual directions of arrival @),

So far we have assumed that an ensemble average of the array output covari-
ances are available. Generally, a finite data sample is used and estimation is carried
out for the unknowns of interest using the maximum likelihood procedure.

For zero mean M-variate (circular) Gaussian data x(t,);n = 1,2, -+, N in (3),
with unknown MxM covariance matrix R, the maximum likelihood (ML) estimate S

of the covariance matrix is given by [16, 17]
1 N t
S=y X x(t,)x'(t,) . (17)
n=1

Using the invariant property of the maximum likelihood procedure, the corresponding
estimates S, S, and S for the unknown smoothed matrices Rf, R, and R can be con-
structed from S by the same rule that is used in constructing R, R, and R, respec-
tively, from R. Thus, for example,

S=%(s, +S,) (18)
and
(3) Notice that these arguments can be readily extended to scveral groups of signals where the
signals arc cohcrent within each group, but incohercnt between groups. In that casc the

additional number of sensors required to estimate all incoming arrival angles can be shown to
be [K /2], where K, represents the size of the largest coherent group of signals.
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L N
s, = %é sf = TVIT,Z_% ) x/(n) (/). (19)

In what follows we study the statistical properties of these estimated smoothed covari-

ance matrices and their associated sample estimators for direction finding.
2.2.3 Performance Analysis

2.2.3.A. Main Results

In this section the statistical behavior of the forward-only and forward/backward
smoothing schemes is examined. These results are made use of in deriving expres-
sions for the bias and the resolution threshold of two equipowered coherent sources,
and comparisons are made with similar results obtained for uncorrelated sources [13].

Towards this purpose, consider the eigen-representation
§=ELE' (20)
for the ML estimate of the f/b smoothed matrix R, with

E = [él’éz’”"él('él(ﬂ"”’éM]

L=diag ([, 0yl iy iy ]
and

- et
EE =1,

where €,>0, i =1,2,---,M for uniqueness. Here the normalized vectors
8,8, ", & are the ML estimates of the eigenvectors B, B,, - -, By of R respec-
tively. Similarly, 7, /,,- -+, [} are the ML estimates of the K largest and distinct
eigenvalues A, A, -+, X and the mean of [, ," * - , I, is the sample estimate of the
repeating lowest eigenvalue o® of R. Following (16), the sample direction estimator
can be written as

Owy= 3 l&awi=1-3 [8aw)l*. 1)

k=K +1 k=1

The asymptotic distribution of the estimates of the eigenvalues and eigenvectors
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associated with the distinct eigenvalues of R is derived in (A.31) - (A.32) Appendix A.
Corresponding results for the forward-only scheme in (11) and the conventional
scheme in (8) can be readily evaluated as special cases of this general result. It is also
shown there that the estimated eigenvalues and a specific set of corresponding unnor-
malized eigenvectors are asymptotically (in the sense of large V) jointly Gaussian with
means and covariances as derived there (See (A.33) and (A.34)). Further, after
proper renormalization and using an exact relationship among the different sets of

eigenvectors, it is shown in Appendix A that (see (A.39))

3 k [v T .
E0@]=0W+x Y |5 —H;—)z B
i=1 k=l (X - X

kpi
M M fﬁk/ t - -t 2
-y Y T aWw)BBaw)| +o(1/N7) (22)
k=11=1 (’\,' _Ak)(’\,' "'\[)
ki lpi

where from (A.16)

-A1LL[

2ol m atof a | atob a otob ;
L 8577 5 % |ARLBARLE +BR BBR, B

2 2 P ipq
2t f - -tob 2tnd - tof =
*BRUR, B+ BR, A A Rpoqﬂk] (23)

with5,i = 1,2, --+, M as defined there and Rpfq, R:q as in (A.17).

Similar bias expressions for the forward-only smoothing scheme can be obtained
from (22) by replacing (23) with (A.18). In particular for the conventional
(unsmoothed) MUSIC case with (A.19) in (23), after some simplifications (22)
reduces to
n 1 K M ’\i’\k t 2 t 2 2
EQ]=0@+ xS |8 —— (18w - 18fa@ ) | + 0 (/N?)

LKL = )

2
= 1 X __—,\ia t 2 2 o)
BACAR P e (M -K)1Bfa) I - Q@) +0 (1N (24
= l—a
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where A, B;,i =1,2,---, M, are as defined in (8) and Q (w) is given by (9).

Similarly, from (A.42)

Var (0 (w)) & 6°(w) =

M Re[[ L at(“)ﬂ ) a(“’) + rkjlz af(“’)ﬂzﬂ 3(w)] t(w)ﬂkﬂ 3(w)]

2> K K M
N 'z-:l E 1 kzl 121 ) VD W Y5 U}
b=ty= kfil;j (,"‘ k)(j— 1)

+ 0 (1/N? (25)
which for the conventional MUSIC case reduces to
A

K i
Var@@) 2@ = = 3 | 5 ——— IB/a) [ 18] a) |
16 )

BWE:

,\.A

K t t 2
- 8~ 18l 1Bla@) 2| + 0 (1/N?)
=1 (N —A)
JEi
- E B 18w [8a) [ + 0 (1/N)
i=1k=K+1 () -,\)
2 kA t 2 2
= N—Q(w)z ——22-|ﬂ‘a(w)| +0(1/N ) (26)
i=1 (A -0

Since along the actual arrival angles, Q(w,) =0, k = 1,2,---, K, (26) allows us to

conclude that within the above approximation,
Aw)=0 ; k=12 K (27)
i.e., in all multiple target situations, where the conventional MUSIC scheme is applica-

ble, the variance of the estimator in (21) along the true arrival angles is zero within a

first-order approximation. Although at first this conclusion does not seem to agree
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with the results of Kaveh et al., for a two-source case (See (30) in [13]), an algebraic
manipulation shows that within the above approximation, their Var (D (w,)) =0,

agreeing with this result.

The general expressions for bias and variance in (22) and (25) can be used to
determine the required sample size for a certain performance level or to arrive at use-
ful resolution criteria for the forward-only or the f/b smoothing schemes. Though the
general cases are often intractable, a complete analysis is possible for the f/b scheme
with L =1, which of course can decorrelate and resolve two coherent sources. As
shown in the next section, this case leads to some interesting results, including the

resolution threshold for two completely coherent equipowered sources in white noise.

2.2.3.B Two-Source Case

Consider the special case, where the two sources present in the scene are com-
pletely coherent with each other. In that situation, the array output data together with
its complex conjugated backward version x,b (ny;n=12 - , N, (f/bsmoothing
with L = 1) can be used to decorrelate the incoming signals, therebv making it possi-
ble to estimate their arrival angles. For two equipowered sources, the bias and vari-
ance of the associated sample estimator can be computed by using (A.20) in (22) and
(25), respectively. After a series of algebraic manipulations for mean value of the esti-
mator we have

5,0

A - 2 t - 4 -
EWOW@N =0+ 37 5 —[(M - DIB/a)I* - 0] + o
‘=1 (, -o%)

1
N*

). (28)

Let 7(w) and n(w) denote the bias in the f/b smoothing scheme and the conventional

MUSIC scheme. Then from (28)

i(w) LE[Q )] - O(w)

1 2 Xaz R

1 .1 2 N o

=N X ___—[(M =) B a(w)|” - Q)| + o(1/N7) (20)
=1 (A - oY)}
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and from (24) with K =2 we have

1 2 ’\i"z t 2 2
¢m=ﬁgz;:¥kM—amwm-Qw}wumy (30)

To evaluate variance, let g; ikl denote a typical term in (25). Then

2 M M

-2 2 2 2
GW=N@up+9o+t9an*920) * N _El ‘21 kEB 123 Dijua -
i=] j= - -

Using (A.20) it is easy to show that the terms within the first parentheses add up to

zero, and by repeated use of (A.20) over the remaining terms it can be shown that

3 1 2 xloz
TWTNE S
1 =]

2,2

(1830 w)

M -1 .1 tova Lt - .2
+ 8 Re(B a4 a2’ B 2’3, )| + 21787

k=3

20(w) 2 A ) . .
= SR o Bl e oqn) (21)
y 1=} ‘A, -0‘).

Agan ri:(...") = é:(-v:) = 00n this case also. Notice that lwas i (29 and () for the
f.'b smoothing scheme with L = 1 and the conventional MUSIC «cheme with K = 2
are functionally identical except for a multiplication factor of two in the comvenitnal
case Moreover. these tesults suggest that in a correlated two cource cace, the fh
scheme will perform supernint to the conventionai one. This can be caalv llustrated in
an uncorrelated scene where equality of the array output comanance matrnices 1n the
smonthed and conventional cases imphes A =3 .8 =8 i = 1.2 - Mand T,
= () l__ (k. » ﬂf'y, '1;11‘ ). Sulktituting these values in (22) and (25), 1t eauily
Foilows that a(.) = () "2 and 6:(,;; = a’(w) and consequently, the f/h <cheme 1< umi-
formly superior to the comeertional one. Homever, in a correlated <cene. although the

effective correlation coefficient reduces in magnitude after smonthrg it i< difficult 1o
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exhibit such uniform superior behavior explicitly. Nevertheless, certain clarifications
are possible. To see ihis, consider two cases, the first one consisting of two correlated
sources with correlation coefficient p, and the second one consisting of two coherent
sources. In both cases, the sources are of equal power and have the same arrival
angles 8, and 6,. The correlated case can be resolved using the conventional MUSIC
scheme, and the coherent scene can be decorrelated and resolved using the f/b
smoothing scheme with L = 1. In the later case from (B.2) and in particular from
(B.9), smoothing results in an effective correlation coefficient p, = exp(j(M -
Dw,)cos(M - 1)w, with w, = x (cosf - cosd,)/2, between the sources. In the
event when the temporal correlation p, in the conventional case is equal to the above
p,thenR =R, X\ =X;B, =B,,i =1,2; and from (26), (29) - (31) the f/b scheme is
uniformly superior to the conventional one in terms of bias. This conclusion is also

supported by simulation results presented in Fig. 1 with details as indicated there.

As one would expect, for closely spaced sources the performance of the conven-
tional scheme in an uncorrelated source scene is superior to that of the f/b scheme in
a coherent scene. This is to be expected because for small values of angular separa-
tion (A2 < 1) from (B.28) and (B.29), we have n(w;) <#(w;),i = 1, 2. The deviation of
n(w; ) and 7j(w; ) from zero - their nominal value - suggests the loss in resolution for the
respective estimators. Within a first-order approximation, since the estimators have
zero variance along the two arrival angles in both cases, for a fixed number of samples
a threshold in terms of SNR exists below which the two nulls corresponding to the true
arrival angles are no longer identifiable. This has led to the definition of the resolu-

tion threshold for two closely spaced sources as that value of SNR at which [13]

E[Qw)]=E[Q(wp] = E[Q((w, +w)/2)], (32)
whenever Var(Q(wl)) = Var(QA (wp))) =0 . In the case of the two equipowered

uncorrelated sources equating (B.28) and (B.30), Kaveh et al. found the resolution

threshold to be [13]
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-... coherent case using (29) (f/b scheme with L - 1)
0.01 _I'\ * coherent case simulation with N=125
I — uncorrelated case using (30) (conventional MUSIC)
| + uncorrelated case simulation with N=125
‘\ - - correlated case (p, = p,) (conventional MUSIC)
',_ « correlated case simulation with N=125
BIAS \
L
0.005 %
P \
3 \
\ \
+ e — -
............... I PPV UUSIE BTSRRI |
0 + | ] ¥ .
0.1 0.2 03 04

ANGULAR SEPARATION

Fig. 1 Bias at one of the arrival angles vs. angular separation for two equipowered
sources in uncorrelated, correlated and coherent scenes. A ten element array is used

to collect signal in all these cases. Input SNR is taken to be 10dB and number of
simulations in each case is 30.

1/2
R = N

A s -2) 2

The corresponding threshold ET in the coherent case can be found by equating (B.29)

and (B.31). In that case, after some algebraic manipulations we have

1/2
o dfom-2( 1. 1 A NM -2)
T N[ A’ [3A2 20 16][1+[1+5M(M‘4)A] ”

2
1 1 Al 1
[ Eee(at e

Though éT and £ possess similar features, for small arrays the resolution threshold in
the coherent case can be substantially larger than that in the uncorrelated case. This

asymptotic analysis is also found to be in agreement with the results obtained by
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Monte Carlo simulations. A typical case study is reported in Table 1. When the
equality in (32) is true, the probability of resolution was found to range from 0.33 to
0.5 in both cases there. This in turn implies that the above analysis should give an
approximate threshold in terms of ¢ for the 0.33 to 0.5 probability of resolution region.
Comparisons are carried out in Fig. 2 using (33), (34) and simulation results from
Table 1 for 0.33 to 0.5 probability of resolution. Fig. 3 show a similar comparison for
yet another array length. In all these cases the close agreement between the theory

and simulation results is clearly evident.

The above range (0.33 to 0.5) for the probability of resolution can be explained
by reexamining the arguments used in deriving the resolution thresholds (33) and (34).
In fact, (32) has been justified by observing that within a first-order approximation,
Var (Q (w,)) = Var(Q (w,)) = 0. Although Var (0 ((w,+wy)/2)) is equally important
in that analysis, it is nevertheless nonzero (see B.32 and B.33). This implies that
though £, and éT satisfies (32), in an actual set of trials the estimated mean value of
Q((w1+wz)/2) will almost always be in the interval (0, 2E[Q((w1+w2)/2)]) and
clearly resolution of the two nulls in O (w) is possible only if this mean estimate lies in
the upper half of the above interval. In the special case of a symmetrical density func-
tion for the mean value estimate, this occurs with probability 0.5 and the observed
range may be attributed to the skewed nature of the actual probability density func-
tion.

IV. Conclusions

The asymptotic analysis of a set of high resolution estimators for resolving plane
waves that are correlated or coherent with one another is presented here. A
forward/backward spatial smoothing scheme that decorrelates coherent arrivals is
treated first for its mean and variance; similar expressions for the forward-only
smoothing scheme and the unsmoothed conventional MUSIC scheme are derived as
special cases of this general analysis. In particular, the variance of the conventional
MUSIC estimator along the true arrival angles is shown to be zero within a first-order

approximation. This result is independent of the total number of sources present in
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Table 1

Resolution threshold and probability of resolution vs. angular separation for two
equipowered sources in an uncorrelated scene. (number of sensors = 7, number of
snapshots = 100, number of simulations = 100). Probability of Resolution € Total
number of successes in 100 simulations/100.

angles of arrival | angular separation uncorrelated coherent
A b, 2wy SNR(dB) Prob. | SNR(dB) Prob.
19.00 25.00 | 0.1232 17 0.16 26 .
18 0.17 27 0.39
19 0.22 28 0.44
20 0.47 29 0.58
21 0.51
22 0.71
34.00 40.00 0.1978 11 0.26 15 0.27
12 0.39 16 0.35
13 0.60 17 0.61
14 0.65 18 0.76
113.00 | 118.00 0.2474 6 0.20 9 0.09
7 0.30 10 0.36
8 0.41 11 0.44
9 0.52 12 0.57
i 10 0.74
60.00 66.00 0.2930 4 0.23 5 0.22
5 037 6 0.36
6 0.47 7 0.35
7 0.66 8 0.62
127.00 | 135.00 0.3308 1 0.18 1 0.11
2 0.22 2 0.20
3 0.33 3 0.26
4 0.53 4 0.47
5 0.66 5 0.60

the scene. Further, a resolution threshold, which depends on the relative angular
separation, number of sensors, number of snapshots and signal-to-noise ratios, for two
coherent, equipowered, closely spaced signals is derived from the bias and variance
expressions of the f/b smoothing scheme. This large sample based asymptotic result is
compared to the one obtained by Kaveh et al. [13] for two uncorrelated, equipowered,
closely spaced signals. From these comparisons, to detect the arrival angles for two
closely spaced, equipowered, coherent signals, under identical conditions approxi-
mately [(1 /de)z- 1] times additional snapshots than those in an uncorrelated situa-
tion are required. These results are also seen to closely agree with those obtained

from Monte Carlo simulations.
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----- <oherent case using (34)

30 * coherent case simulation with N=100
——uncorrelated case using (33)

+ uncorrelated case simulation with N=100
20
10
0 ]
0.1 0.2 0.3
ANGULAR SEPARATION

Fig. 2 Resolution threshold vs angular separation for two equipowered sources in
coherent and uncorrelated scenes. A seven element array is used to receive signals in

both cases.

THRESHOLD
SNR (dB)

10

0

..........

coherent case using (34)
* coherent case simulation with N=100
uncorrelated case using (33)

+ uncorrelated case simulation with N=100

!

0.05

0.1 0.15

ANGULAR SEPARATION

Fig. 3 Resolution threshold vs. angular separation for two equipowered sources in
coherent and uncorrelated scenes. A fifteen element array is used to receive signals in

both cases.
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Appendix A
Asymptotic Distribution of the Sample Eigenvalues and Eigenvectors Correspond-

ing to Distinct Eigenvalues of R

With symbols as defined in the text, S representing the ML estimate of the

forward/backward (f/b) smoothed covariance matrix R, we have

f‘=‘21Z‘§L3 (R/ +R?) 2818’ (A1)
I=1
- N .
s=3 5 [ 5 (oo« teefon)] - B8 a2
=1 n=1

where

A=diag[X, %y, - 5,0 o] L=diag [Ty o B gy oo o By |

sat _ et
BB =EE' =1,

and B, E satisfies B,-,-, €,20,i =1,,2, .-+, M for uniqueness. As is well known, the
eigenvectors are not unique, and let C represent yet another set of eigenvectors for §,

ie.,

§=ciLc (A3)
where
C=[c ¢, e, ] cc' =1 (A4)
v M| M- ‘
For reasons that will become apparent later, C is made unique here by requiring that
all diagonal elements of Y given by

y=8'cC (AS5)

are positive (y; >20,i =1,2, ---,M). In what follows we first derive the asymptotic
distribution of the set of sample eigenvectors and eigenvalues of S given by (A.3) -
(A.S) and use this to analyze the performance of the sample directions of arrival esti-

mator Q(w) in (21). This is made possible by noticing that although the estimated
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eigenvectors &,&, ***, &, in (21) are structually similar to their counterparts
B, By, -+, By, and in particular have é; >0, nevertheless they are also related to
¢.,i =12, ---,K, through a phase factor (4); ie.,

& =ec, i=12",K (A.6)

[]
and hence

O =1-3% lela@P=1- 3 |ela@)?=1- 33y, (A7)

ial i-l i'l

v () = |efa@)|>. (A.8)

Thus, the statistical properties of O (w) can be completely specified by those of

¢;,i = 1,2, ---,K, and towards this purpose, let
F=VN (L-14) (A.9)
G=[gpg2’"',gKy""gM]=\/Iv(C-ﬁ) (A.10)
and
T=8§8=8BciLc'B=YLY (A.11)

where Y is as defined in (A.5) withy, >0,i = 1,2, ---, M. Further, let
U=VN (T -1)
- 7 B L £ dmeon s dmeteh -5 @
with
z/(n) = B8'x/(n) ~ N (0,B'R/B) ; 2°(n) = B'x’(n) ~ N (0,B'R/ B).(A.13)
It is easily verified that these random vectors preserve the circular Gaussian property

of the data vectors. Again, from the independence of observations, asymptotically

every entry in U is a sum of a large number of independent random variables. Using

(4) From (A.2) and (A.3) we havcj%\" = VL where V = E'C. Thus, for any nonrcpeating
cigenvalue [, it follows that &, = e ;. Interestingly, since the eigenvalues of the estimated
covariance matrix are always distinct with probability one [18], (A.6) is truc for 1<i <M.
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the multivariate central limit theorem [16], the limiting distribution of U tends to be
normal with means and covariances given by

1 N 1 L
Elu;]= N > E [i—lgl [zh(n)zlj (n)+zh(n)zlj (n)] —/\, 5,1] =0 (A.14)

(Here onwards whenever there is no confusion, we will suppress the time index n)

since
L
E[umz,{( )+ 2b @) )] BIE ['2—1[2[ )*+x,(x,)*]]

- -

=B RB 5; (A.15)

=B E [§]

‘Ql
>4|

and

. 1 N 1 L L
Eluyug) =N 2 [zf EE{E i Tk )+ E iy 2 7

b* b
+E[ p; qk q,]+E[ p] qkqu]}] )\,\kéuéu

Using the results ®) for fourth-order moments of jointly circular Gaussian random

variables and after some algebraic manipulations, we have

uMl"

. L - -
E [uyu] = if 5 (AR AARLE AR BAR, B,
q=1

--f

4R B +BR %3RS B ) AT, . (Al6

+ B Rf 3
Here by definition p, = M, -M —p +2, q,= M, —M -q +2 and 4; is the inverted ﬂj
vector with Vim = ﬁ; M-m +1- For L =1, in an uncorrelated as well as a two equi-
powered coherent source scene, it is easy to show that [9:1'1 /'31. = ’7:1'1’1}. for all i, .

Using standard results regarding the equivalence of eigenvector sets of a hermitian

(5) Let z,, 25, 25, 2, be jointly circular Gaussian random variables with zero mean. Then [15]

E[z2%2%,] = E[z23]E(z23]) + E[z23]E[223 ]
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matrix (see footnote (4)), it then follows that 5, = B, e/%, i =12 -,K and
[gap * ">y ) = [Besp ***» By 1V, where V is an (M -K)x(M -K) unitary
matrix. Further,
R AERIGDN 5 Ry, GE[X(x)) (A.17)
In obtaining (A.16), we have also made use of (A.15) and the fact that for circular

Gaussian data,

E (2271 = BIEWx; 1B = BIEX] (<)) 177 =0, p,g =1L

The forward-only smoothing scheme now follows as a subclass of this general

analysis. In that case the estimate of the smoothed covariance matrix is given by

L
=11—2 Nf; x/ (n) (x/ (n))! EfoE*
=1 n=1

Then, as in (A.14) with z,{(n) = ﬂ}i x,f (n) where E [Sf ] R = BfAfB} =

Z vi Byi ﬂf,, we have

Thus,E[uij] = 0 and
. 1 L
Eu;uyl] = Fxi pY Z‘ ﬂf, ﬂ,k ﬂf, R/ » By —I‘,{,] (A.18)

where we have again made use of the circular Gaussian property of the data vectors.

Two important special cases of considerable practical interest are the conven-
tional (unsmoothed) MUSIC scheme and the f/b smoothed scheme with L =1. Of
these, the former one corresponds to the forward-only scheme with L =1, and in that

case from (A.18),

Ligj = ﬁf RB, ﬂ,' RB;, =XA8,6;. (A.19)
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In the latter case, using (A.17) together with the identity B'a(w,) =0 for
i =K+1,K+2,---,Mandk = 1,2,---,K simplifies (A.16) into

1. St .
EAA(5¢5]I ﬂt‘V'Iﬁ)

in an uncorrelated scene. Similarly, in a two equipowered coherent source scene, we

also have
, . - 1
i jaik J _Z- [ﬂ R ﬂkp( uﬂ + ﬂ Rupkﬂl
~ S f - -T tob - - - . .
I‘iklj -1 ﬂ Rll 1 i) llﬂk ﬂ Rll l ] lﬂk] ’ l’]’kvl 52 (A.ZO)
.l_xx f- -t herwi
>N (88, + B3, 78,), otherwise .

\

Further, using (A.11) together with (A.12) and (A.9) we have

- 1 . - 1 t
= —_— —PFY
T=A+ \/ﬁ YLY = Y(A+ TN F)

which gives the useful identity

- 1 -

D S _1 ot
A+%VU—Y@+¢NFW. (A.21)

To derive the asymptotic properties of the sample estimates corresponding to the dis-
tinct eigenvalues A, X,,+ -+, A of R, following [16, 19] we partition the matrices &, U,

F and Y as follows

Al o Ull U12
A = , U =
o ozl M-K U21 Uy,
Fl o Yll Y12
F= Y= . (A.22)




.48 -
Here A}, U,,, F, and Y, are of sizes KxK, etc. With (A.22) in (A.21) and after some

algebraic manipulations and retaining only those terms of order less than or equal to

1/VN , we have

A (o) U, U, A (o)
1
+ —F— =
vN
0 ol Uy Upl lo vyl
Awh  Aw! F 0 W, A oW.Y!
1 17711 17721 1 111 12722
+ — + +
vN , N .
YW, o o Y,FYLl Lw,4 0
1
+0(F) (A.23)
where
W, =VN (Y, - Ig) (A.24)
Wp=VNY, , W,= vN Y,

and define the column vectors w;, w,, " - -, w, from

wll A
W =[wl,w2,'--,wK]=W.
21
Similarly,
t_ =
YY =1, = +
0 Y,Y,
t t t
1 Wiy WpYy Wi Wai I
—_ + +o0(x). A25
VN t o(x) ( )
Wa o YW, O

Thus, asymptotically for sufficiently large N, from (A.25) and (A.23) we have

0=W, + W (A.26)
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t _
W, +Y,W;, =0

U, =W, A +F, + kW] (A.27)
and

< 2 < 2
Uy = Wyh + YW, =W, & - o'W,,. (A.28)
Since y; >0, this together with (A.24) and (A.26) implies

w.=0 , i=12---,K
and

<
[
|
5
<
I

1,2, ,K , i #j
which when substituted into (A.27) - (A.28) gives
fi=w; , i=12-,K (A.29)
u /5 -%)  Bi=120 K i #
w,. = (A.30)
/X -0") i =K+LK+2, M , j=12- K.

From (A.10) and (A.5) we also have

Y
G =VN (C-B) =VNB(Y-I) =VN

Y21 Yzz"lM-K

1 "IK Y,

which gives

[gl’ g " ’81(] = ﬁ[wvwz"" ’WK]'
This together with (A.9) and (A.29) gives
=% +QNVN)f, =X + QNN 5 i=12-,K (A3
and
- - - M .
¢, =B +(/VN)Bw, =B, + INVN)Y w;B, ;i=12""" K. (A3
j=1
jri
Thus, the estimators I; and ¢; ,i =1,2,--+,K, corresponding to the distinct eigen-

values of R, are asymptotically multivariate Gaussian random variables/vectors with
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mean values ; and 8, ,i = 1,2, -, K, respectively. Further,

. 1 . .
Cov(f; 1) = NE[uu ;)= 7l » ij =12 K (A.33)

and
1 M M rklji —
Cov(c,c )= N Yy ¥ - — — BB - (A.34)
k=1l=1 (A - -
it (A '\k)()‘, A)

Notice that ¢; in (A.32) are not normalized vectors, and it may be emphasized that in
the case of eigenvectors, the above asymptotic joint Gaussian property only holds good
for these specific sets of unnormalized sample estimators. However, from (A.4) since
the eigenvectors ¢; ,i = 1,2,- -, K, appearing in (A.7) are normalized ones, to make
use of the explicit forms given by (A.32) there, we proceed to normalize these vectors.

Starting from (A.32), we have

2
le I?=cle =1+ % z: w; 1> > 1
Jf'
and, hence, the corresponding normalized eigenvectors é‘i , i =12---, K have the
form
A a L M 2) - 1 M -
S e | 7e =[1- ZN,E lwi 17| B; + —mjglw,,ﬂ,
jEi JE
1 M M 2 2
—2N\/1V2 Y Iw, 17w, B +0(1/N7)
k=11=1
ki I#i
Using (A.30) and (A.16) this gives
.1 M Ty a . -
E[€1=8-58% ﬂ’.+0(1/N) ; =12 ,K (A.35)
Jfl (A —A )
] {

since from the asymptotic joint normal distribution of these zero-mean random vari-
ables W (i #/), their odd-order moments are zero. Thus, asymptotically these nor-
malized estimates for the eigenvectors f)l, [92, el BK, of R are unbiased and the

exact bias expressions are given by (A.35). Further,
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et =f1o (5 wiPe s w i?l|an
A T 2N E Iwbl E'wk)| 1 7y
kel k=)
kp: kpy

M M 2 st MM 2 ea ot
- 2NVN kz}n Ex Wl wabify + kz-:l 12-31 Iw"jl Wi
kpi Qpi kpjlpj

M M 2. -t M M 2 ¢ -t ,2

+ 3% wh.lw,j| ﬂkﬂj + Y Y Iw,l w,jﬂiﬂ, +0 (1/N°). (A.36)
k=11=1 k=11=1
kgi lgj kpi lpf

Again, neglecting terms of order l/N2 and proceeding as above, this expression

reduces to
At - -t 1 M IT‘ulck M .jjkk o
E[;C;]=ﬂ:;"2j_vz 2+23 : 2 |
£ (3 -8 £ (5 -8
1 M M L . .t 2 A
+ N 21 12 PR B.B, + o (1/N7) (A.37)
k=11=1 (X — -
L =56 - )

An easy verification shows that Cov (’c‘,.,’c‘j) is once again given by (A.34), but
nevertheless, (A.36) - (A.37) will turn out to be useful in computing the asymptotic

bias and variance of the sample direction estimator Q (w) in (21).

These general expressions in (A.35) - (A.37) for first- and second-order moments
of normalized eigenvector estimators can be used to evaluate their counterparts for
the forward-only and the conventional cases by substituting the proper T values

derived in {A.18) and (A.19), respectively. Thus, for the conventional MUSIC case
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using (A.19), we have
A 1M A :
E[c,]=ﬂ,-2N_231 A A2ﬁ,-+o(1/N)
T Gy
ot t 1 [ M A A M ’\j’\k t
E[c,'cj] =ﬂ,‘ﬂj -~ N k21 5 + kzl \ ) ﬂ,'ﬂj
k #i (A, _Ak) k;j (Aj - k)
1 M A t 2
+ NV T zﬁkﬁk 6,.j+o(1/N)
AR

where A, B, ;i =12, --+-,M are as defined in (8). These results coincide with
those in [13] (see Appendix A).

Once again for the f/b smoothed case using (A.7) - (A.8) and recalling that the

eigenvector estimator appearing there are normalized ones, we have
- At 2 - 1‘ A AT
yi(w) = |¢aw)|” = a'(w)¢, ¢ a(w) (A.38)
and from (A.37) and (21) we have

El QW] =W+ Ny X kEI —_, 1FaW)l
i=l kpi A =)

M M fiikl ' — ] 5 )
-y Y ———aWBBawi+o (1/N)=Qw)as N 0. (A39)
IR RCERY

Also,

2

A A A K K
var(@(@) =E10°@)] - (E10@)) =% & (Ely, 1-El, [, 1) (A

i=1j=1

Using (A.38) and (A.36), after a series of manipulations, we have
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Elyy; ] - EW D] = 3 El4,@d; ()] + 0 (1/N?)
where

- . tg, B! * g gt

;@) = 5 (wya'@BBlaw) + wya'@)B,Bla(w))
ki

which gives

E[Y,'Yj] - E[)’;]E[.Vj] =

. Re[ (£,,;:2'(0)B, Ba(w) + £, (B, Bla)) a'w)B, Blaw)|

- — - +0 (%).
Hx & =X = X) N
(A.41)

Finally, with (A.41) in (A.40) we get

Var (Q (w)) =

2 K K M M Re[[f’dﬁ at(w)B j BI' a(w) + fkjli at(w)ﬁlﬁ}a(w)] a’(w)ﬁk ﬁ:a(w)]
NY X

5, - 50 -3
o1 i) & =X - %)

+0(1/N) = 0as N — oo. (A.42)
Thus Q (w) is a consistent estimator in all cases.

Appendix B

In this appendix, expressions for eigenvalues and eigenvectors of the smoothed
covariance matrix R with L =1 for two coherent signals are derived. In addition,

several associated inner products that are needed in section 2.2.3.B for resolution per-

formance evaluation are also developed {20].

Consider two coherent sources ayu(t) and ayu (1) with arrival angles 6, 6, and
source covariance matrix
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l"‘1|2 a0 “ . WAt i, )
. |2 = a, [“1 "2] “aa , =|qle’” , E[Iu(t)| ]:
S B L]

When the forward/backward smoothing scheme is deployed once to decorrelate the

coherent signals, from (15) the resulting source covariance matrix l'{u has the form

.1 loy|® @esn]
R, = ?[aa + '7'1] 2 = ?[0'7] (B.1)
0P,
where
. o7 JM - 1wy JM =1,
7=y vyl v =e W, =e

and the effective correlation coefficient p, is given by
o = (147" %2 (B2)
Using (B.1), the noiseless part of the smoothed covariance matrix R can be written as
- . - 1
R QAR A"= S[b b} + bb}) (B.3)
where
b, = VM (aa(w;) + aya(w;)) ; b, = VM (v,aa(w,) + vaza(w,)).  (B.4)
The nonzero eigenvalues of R are given by the roots of the quadratic equation

2 - .
i -r(AR Aha+ R ATA| =0
which gives
IR A'A| 1/2

g = -;-tr(ARuA') 1+]1- - —r s i=1,2. (B.5)
[zr(AR“A')/z]

To evaluate 4, 4, explicitly, we define the spatial correlation coefficient p_ between
the sources to be

sinMw .
(M -1w, d M-Duw, ..
o, = a(w) afwy) = T ——— 87N Vg vy ) (B.6)

o
A sinw,
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withw; = (w; - w,)/2. From (B.3) - (B.4) we have

tr(AR AT) = M (|o|? + |oy|? + Re(afayp, + ajaiviig,)) (B.7)
and
IR,AA| = |R, | |AA] =M% | P, 1P(1- 15, 1)1 =[5 >). (BY)

Here onwards we consider the two sources to be perfectly coherent and of equal

power;ie., a; = and | ¢ |2 = 1. In that case we have

1+ u1u2° .
™ -1
p=—5 = e’ ™ cos(M - 1)w, (B.9)

Re(p,) = cos[(M - 1y, ] Si(Mw;) = Re(p,p,") (B.10)

and with (B.7) - (B.8) in (B.S) it is easy to see that
5 =M[1+Re(gp)) o, +nl]: i=12, (B.11)

where we have made use of the identity [ Re(p, p,‘)]2 = | p, |2 | p, \2. The eigenvec-
tors corresponding to these eigenvalues span the two-dimensional signal subspace, and

from (B.3) they are linear combinations of b, and b,; i.e.,

B o (b +kby),i=12. (B.12)
Moreover, 4, 3 ., = 1,2, as a pair satisfy

(AR, ANB =B ,i =12,
which together with (B.3) results in

1 1 o .
> [bjb, + kblb]b, + > [blb, + k;blb,]b, = by + kb, i =1,2. (B.13)

The solution to (B.13) need not be unique. However since the eigenvectors can be
made unique by proper normalization, at this stage we seek a solution set to the dis-

tinct equations

1 o1 L
3bib, + kblb,] =4 ; S[bjb +kbib] =4k ,i=12.  (B.4)
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Clearly, solutions to (B.14), if they exist, satisfy (B.13). To simplify &k, ; i = 1,2
further, using (B.4) and (B.10), notice that

bib, = 2M (1 + Re(p, "))

.z L J * .z
blb, = 20" M v (o + p") = 20" Muy(p, + p,)
and these together with (B.11) in (B.14) yield

lp, + 0, | lo, + o, |
k; =+ =% . (B.15)

o2 . 2
al Vl(ps +p;) af Uz(ps + pg)

Using (B.15), the eigenvectors in (B.12) can be written as

B. (b, + k;b,) = (o + o v k; )a(w)) + (a + o' v, k; a(w,)

lp; + 0, | lo +p, |
o [l * ———] aw) + (12— |a(w,). (B.16)
p; +p p; t p,

To simplify this further observe that

i(M‘l)‘"a[

b, +p =€ cos (M - 1w, + Si(de)]

and consider the case when [cos (M - 1)w, + Si(Mw,)] > 0. Then from (B.16)

- (M -1 2 -1(M -1 2 -j(M -1 2
ﬂiae;( Y/ [e j( )wl/teu )wZ/]a(wl)

(M~ 1w,y /2] —j(M-1)w/2 -J(M - Dw,/2
LY [e M -Dwf2 i w]a(wz)«ultuz

where

JM -1y /2
u =e

JM - 1)w,/2

a(w) , u,=e a(w,).

Finally, the normalized eigenvectors corresponding to the nonzero eigenvalues in

(B.11) are given by




b = (u, F w)/\/2AT T Si(Mwy,)) otherwise

-57-

(u, * u,)/\/2(1 = Si(Mw,)) [cos(M ~ D)w, + Si(Muw,)] >0
(B.17)

i=12.
Notice that the uncorrelated source scene is a special case of (B.1) witha, = o, = 1,

and p, = 0. Thus from (B.11) in that case

=M1t |p,]) (B.18)
and similarly
(u; 2 w)/{/2(1 £ SiMw,)) SiMw,;) >0
B; = (B.19)
(u; Fu)/{/2(1F SiMw,)) otherwise
i =1,2.

From (B.17) and (B.19) we can conclude that for equipowered sources, irrespective of

their effective correlation p, resulting from spatial smoothing, the smoothed and the

uncorrelated cases have the same set of eigenvectors whenever [cos(M - 1)w, +

Si(Mwy)] and Si (Mw,) have the same sign; i.e.,

B. =8 ,i=12 [cos(M - 1)w,; + Si(Mw,)] 20 and Si(Mw,) 20

ﬁl =p,, Bz =B, otherwise .

We conclude this appendix with several useful parametric approximations to
eigenvalues and inner products between eigenvectors and direction vectors for both

uncorrelated and coherent cases. To start with, let [13]
A? & (M%) /3

For closely spaced sources (M w, )2 < < 1, and in that case from (B.9) and (B.6)

L ya+gCar )+

Py

ej(M-l)w,,[ 3 M-12.2 3 M-1.4.4

and




sinM w
: 1 4 . 1.2, 3 4
smwd
p, =MD [1 - —;‘Az + %A“]. (B.20)

For the uncorrelated case parametric expressions for the eigenvalues can be easily
obtained from (B.18) and (B.20). In a similar manner for the coherent case, using
(B.11) we get

ﬁ1z4M[1—(1—2—i{')A2+(-§%-8—19w-)A4] (B21)

.3 2
=M (1- +7)a (B.22)

Because of the equivalence of eigenvectors for two uncorrelated and perfectly

coherent equipowered sources, we have (for Si (Mw,) > 0)
2t 2 _ yat 2 . _
|18;a(w)|” = |B/a(w)|” , foradllw, i =1,2 (B.23)

and it suffices to obtain the inner products of the eigenvectors in (B.19) with direction

vectors associated with the true arrival angles. A little algebra shows that

.t ) ) ) 1+SiMuw,) 12 3 4
|Bia(w)|” = |Bia(wy)|” = 2 =1- IA + %A (B.24)
1-SiMw,)
Al d/ 1 3
|Boay)|” = 1Bla@)|* = — 7 = 38" - gga'. (B2
Similarly, for the midarrival angle w,, = (w; + w,)/2 we also have
: 2
.t 2 - 2(Si(Mw, [2)) _ 1
181a(w,)|” = |Bja(w,, )" = _ =1- g5 (B.26)
1+ SiMw,)
and
1Bjaw,) I = 1BjaG,)[* = 0. (B27)

Finally, with € = § 2 PM /o® = M /o, and using (B.21) - (B.27) in (29) - (30), for bias

we have
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M-2[1 A~ ]
) = ~ 8 B.28
o) = 2 [ s i (B28)
] M-2[1(_Ma™ 1] a%( 2ma™* Ma~?
W) = TN ['g[ oM -2 1_0} z [9(M —4) " 30(M - 4)”(3-29)

fori =1, 2, and for the midarrival angle w, , this is given as

A 111 1
E[Qw, )] =a +—[—b +—c] (B.30)
m N f 62
in an uncorrelated source scene and
A B 1(1.- 1 _
E[Q(w,)] =4 +N —b + 3¢ (B.31)
3 ¢
in a coherent scene. Here
a=d=0(w,)=Aa"80,

5 (1+A2/4)], c z[M4_2(1+A2/2)],

_M-=2 3 ).2 . M=-2 3) .2 ma*
=72 [1+[1—2M]A]andc~ T3 [1+[2-M]A]——_45(M—4)'

d| 1 1
az(wm)="ﬁ[;e + Ef] (B.32)
and
-2 df1 .1 -
Wn) =N [4_e + ungf] (B.33)
where

80

1+a%2+94%/80

)]

e=1+a%4+a%40 | f

€ = 1+ (1-3/2M)A% + (47/80 - 15/8M +9/aM %) A°
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2.3 GEESE (GEneralized Eigenvalues utilizing Signal subspace

Eigenvectors ) — New Performance Results on Direction Finding

2.3.1 Introduction

In recent times, multiple signal identification using multiple sensor elements has
been a topic of considerable research interest in array signal processing. A variety of
high resolution techniques that evaluate the directions-of-arrival of incoming planar
wavefronts by exploiting certain eigenstructure properties associated with the sensor
array output covariance matrix have been developed in this context [1]—[11]. Of
these, the relatively new scheme called ESPRIT (Estimation of Signal Parameters via
Rotational Invariance Techniques) [9] —[10] departs from its predecessors on several
important accounts. It utilizes an underlying rotational invariance among signal sub-
spaces induced by subsets of an array of sensors. To accomplish this, in the original
ESPRIT scheme[9], the interelement covariances among the given sensors are used to
construct the auto- and cross-covariance matrices firs't and the common noise variance
is then evaluated by an eigendecomposition of the auto-covariance matrix. After sub-
tracting the noise variance from the proper elements of the autc- and cross-covariance
matrices, the generalized eigenvalues of a matrix pencil formed from the subtracted
matrices are computed and they in turn are shown to uniquely determine the unknown
directions-of-arrival [9]~[10]. Compared to the Multiple Signal Classification
(MUSIC) technique [2], the ESPRIT scheme is known to reduce the computation and
storage costs dramatically. In addition, this method is also shown to be more robust

with regard to array imperfections than most of the earlier ones.

Notwithstanding these merits, when estimates of the inter-element covariances
are used in these computations, subtracting the estimated noise variance from the

auto- and cross-covariance matrices can at times be critical and may result in overall
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inferior results. To circumvent this difficulty, the TLS-ESPRIT (Total Least Squares
ESPRIT) scheme makes use of certain overlapping subarray output- and their cross-
covariance matrices simultaneously [11]. Though TLS-ESPRIT is superior in its per-
formance compared to ESPRIT, it is computationally much more complex. However,
computational simplicity can be maintained without sacrificing superior performance
by exploiting the underlying rotational invariance among signal subspace in an
efficient manner. In that respect, the GEESE (GEneralized Eigenvalues utilizing Sig-
nal Subspace Eigenvectors) technique — that is studied here seems to be promising.
Unfortunately, unlike the MUSIC scheme [12], no statistical performance analysis
results are presently available for the ESPRIT or the TLS-ESPRIT scheme reported

in [9] —[10] to evaluate their imperfections.

In what follows, we first derive this proposed scheme for estimating the
directions-of-arrival of multiple sources. This is carried out by observing a well-known
property of the signal subspace; i.e., the subspace spanned by the true direction vec-
tors is identically the same as the one spanned by the eigenvectors corresponding to
all, except the smallest set of repeating eigenvalue of the array output covariance
matrix. This elementary observation forms the basis for the algorithm described in
section 2.3.2. Using results derived in appendix A [16], section 2.3.3 presents a first-
order perturbation analysis for the case where the covariances are estimated from the
data and evaluates the mean and variance of the directions-of-arrival estimators for a
single-source scene and a two-source scene. These results are in turn used in deriving

resolution thresholds associated with two closely-spaced equipowered sources.

In an uncorrelated and identical sensor noise situation, when exact covariances
are available, all these techniques can be applied to a uniformly placed array or a pair-
wise matched arbitrary array with codirectional sensor doublets. Since functionally
these two arrays generate the same structured data with respect to the methods under

discussion in the exact case, we will assume a uniform array to describe the algorithm.




2.3.2 Problem Formulation

Let an uniform array consisting of M sensors receive signals from K narrowband
sources i ((t), u (), ", uy(t), which are at most partially correlated. Further,
the respective arrival angles are assumed to be 01, 02, cee 0K with respect to the
line of the array. Using complex signal representation, the received signal x; (¢) at

.th
thel  sensor can be expressed as

K -jx(i —1)cosé,
x(t) =% u@t)e +n.(t). (1)
k=1

Here the interelement distance is taken to be half the wavelength common to all sig-
‘e . .th )
nals and n; (¢) represents the additive noise at the I sensor. It is assumed that the
signals and noises are stationary, zero-mean circular Gaussian independent random
processes, and further the noises are assumed to be independent and identical
, : 2 . .
between themselves with common variance 0. Rewriting (1) in common vector nota-

tion and withw, = 1rc080k k=12, --,K, wehave

x(t) =vM § u, (1)a(w,) + n(1), )
k=1

where x(t) is the M X1 vector
T

x(1) = [x (D, x,(0), RO 3)
and a(w, ) is the normalized direction vector associated with the arrival angle 0, ;ie.,

T
2 -(M—l)]

1 -1 -
a(wk)= \/A—{- [lvuk )l‘k ’ )”k (4)

with
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The array output vector X( ¢ ) can further be rewritten as M
x(t) = Au(?) + n(2), (6)
where
T
u(t) = [uy(e)ug(e), - ug(0)] @
T
n(t) = [ny(6),m(0), +  my (1) ®
and
A = VM [a(uy), alwy), -+, ()| )

Here A is an M xK matrix with Vandermonde-structured columns (M >K) of rank K .

From our assumptions it follows that the array output covariance matrix has the form
R 2E [x(£)x'(1)] = AR, A" + oI (10)

where
R, 2E [u(r)u'(s)] (1)

represents the source covariance matrix which remains as nonsingular so long as the
sources are at most partially correlated. In that case AR, Al is also of rank K and
hence, if A, >A> -+ >A,, and B,,7,, - -, By, represent the eigenvalues and the

corresponding eigenvectors of R respectively, i.e.,

i t
R=E A{ﬁ(ﬂ[» (12)
=1
then the above rank property implies that A, , = A ., = =X, = 0% As a

resultfori = K+1,K+2, -+ M

RS, = (AR, A"+ o1 g, = B,

(1) Here onwards T, (")
transposc of , respectively.

T2 ' stand for the transposc and thc complex conjugate




or equivalently,
AR A'B, = 0. (13)
For full column rank A matrix and nonsingular R , (13) implies A'ﬂ,. =0, or
Bla@w,) =0, i=K+1,-,M ,k=12-,K. (14)

Schmidt [2] has used this well-known property in defining the estimator

1
P = 15
(w) 0w (15)
where
Qw) = Y |BaW)|". (16)
i=K+1

Notice that Q(w) = 0 iff w€{w,,w,, "+, wg} and consequently the peaks of (15)
correspond to the true directions of arrival.

A completely different point of view can be developed using (14). Since the K
true direction vectors a(w, ), a(w,), - * -, a(wy ) are linearly independent, they span a K
dimensional proper subspace called the signal subspace. Further, from (14), this sub-
space is orthogonal to the subspace spanned by the eigenvectors By, ,, By .o ",
B,,, implying that the signal subspace spanned by a(w,), a(w,), ‘", a(wy ) coincides
with that spanned by the eigenvectors ), B,, - -, By. Using this crucial observation,
the eigenvectors B,, B,, '+, By in the signal subspace can be expressed as a linear

combination of the true direction vectors (columns of A); i.e.,

K
B =% ¢aw) , =12 K. (17)
k=1

Define the M xK signal subspace eigenvector matrix as

B2(8.8, B ]. (13)
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Using (17)

K K K -
B=|Y ¢,awW) Y ¢aw) Y Ggalw)|=AC (19)
k=1 k=1 k=1

where A is as defined in (9) and C is a KxK nonsingular matrix whose (i, )" element
is €, /VM . Further, define two matrices B, and B, using the first L rows and the 2

to (L + 1)"' rows of B respectively where K <L <M -1;i.e,
B, = [IL | OL,M_L]B (20)
and

B, = [OL,I | | OL,M—L—I]B‘ 21)

Then, we have the following interesting result @

Theorem: Let ~; represent the generalized singular values associated with the

matrix pencil { B, , B, }. Then

’Yk=#k ’ k=172"“9K- (22)

Proof: From (20) and (21),
B,=A,C , B,=AC (23)

where

A = . . .. . (24)

“(L-1) -L-1)_ . -L-1
| 4 Hy Ky ]

(2) Here Iy represents the KxK identify matrix and Oy ; represents the KxJ matrix with all
7cro entrics.




and
-1 -1 -1
By R e
-2 -2 -2
L1 R
A2 = . . e e = AID (25)
-L -L . -L
&t Kg
with
. -1 -1 -1
D =diag{p, py - pg ] (26)

Notice that A, A, are matrices of size LxK and D is of size KxK. To obtain the gen-
eralized singular values for the matrix pencil { B, , B, }, using the above representation

we have
B, -vB,=A,C-~4ADC=A(I - yD)C (27)

Since the K columns of B in (19) are independent, B is of rank K (M > K). More-
over, from the definitions of the rectangular matrices B;, B, in (20), (21), these
matrices are also of rank K (full column rank) and using (23), rank (A,) = rank (€) =
K since L > K. Thus, from (27), the singular values of the above matrix pencil

{B,, B, } are given by the roots of
| I, —4D| =0. (28)
These generalized singular values correspond to the complex conjugates of the diago-
nal elements of D; i.e.,
W =k , k=12 K. (29)

Notice that L can be any integer between K and M —1.
Q.E.D




-69 -

So far we have proceeded under the assumption that the ensemble average of the
array output covariance matrix is available. It may be remarked that the underlying
rotational invariance idea that has been exploited here, is basic to the ESPRIT scheme
and in that sense they are equivalent when covariances are exactly known. Usually,
these exact averages are unknown and in practice, the estimates obtained from the
array output data are used. In that case these methods give rise to different algo-
rithms, and in actual practice, these algorithms will perform differently. Often the
maximum likelihood (ML) procedure is employed in computing these covariance esti-
mates. For zero-mean M -variate circular Gaussian data x(¢,),n = 1,2, **-, N in
(6), with unknown MxM covariance matrix R, the ML estimate S of the covariance

matrix is given by [15]

S = ﬁ > x(£, )X(¢, ). (30)
n=1
The eigendecomposition of S given by
S=ELE' , EE =1 (31)
where
E=[e,e, "",e, "",e); L=diag[l,l, ]

is usually used to obiain the LxK matrices E,, E, by replacing B by E in (20) and (21).
The estimates "?‘., i =12, --,K of the true angular parameters~,,i = 1,2, ---, K
are then given by the generalized eigenvalues of the matrix pencil {E ,E,}. Simula-
tion results using this procedure is presented in Fig.1 for a three-source scene with

details as indicated there.

In what follows, we establish several performance results of the algorithm
presented here using the statistical properties of the estimated covariance matrix S
derived in [16, 17]. These results are in turn used in analyzing the performance of the

estimated generalized eigenvalues in a single-source and a two-source scene.
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2.3.3 Performance Analysis

In this section, we examine the statistical behavior of the estimated generalized
eigenvalues in a single-source case and a two-source case for the least favorable
configuration L = K as well as the most favorable configuration L = M -1. These
results are subsequently used in deriving associated threshold expressions for resolving
two closely-spaced sources. For L = K, it is shown here that the bias of the estimated
generalized eigenvalues is zero and the variance is nonzero within a 1/N approxima-
tion. This behavior is unlike the MUSIC scheme where within a 1/N approximation,
the bias is nonzero and the variance is zero [12, 16]. For L > K, the situation is con-
siderably more complicated. In particular, it is also shown here that for L = M -1 the
estimated generalized eigenvalues are no longer unbiased in a two-source scene. For
sake of completeness, the exact bias expressions together with their variances are also

given. We begin by considering the L = K case.

Case 1: The Least Favorable Configuration (L = X))

A. Single-Source Scene

In Appendix A, the mean and variance of the estimated generalized eigenvalue 5,

for a single-source scene are shown to be

E 3] = +0(5m) (32
and
2M /\102 1
Var() = ———— + 0(——=). (33)
Ty (O, - o NVN

Here, o (1/N\/I\_J) represents the terms of order less than 1/N. From these results,
4, is unbiased within a first-order approximation.
With A, =M P + o for the signal subspace eigenvalue where P represents the

signal power, (33) simplifies into




Var(’11)=-;‘ ?’f? +0(N\/IV) (34)

where{ =M P /02 represents the array output signal-to-noise ratio.

B. Two-Source Scene

With the help of (A.1), the mean and variance of the estimated generalized

eigenvalues 4;, i = 1, 2 in two equipowered uncorrelated source scene are shown to be

(see Appendix B)
EBl=v +o(Gy) 5 i =12 (39)
and
M [2 + Re(p,l_ 1;12)] '\102 ,\202
Var (3, = A+ lo, N5 +(1 = o, N3
ZN[l - Re(p, lu.z)] O =2 (A =0")
bo(mo=) 5 i =1,2 (36)
NVN' "’ ’
where
I sinMw
p, = al(wa(w,) = e T XEmTZ L wy = (wy - wy)/2. 37)

Thus, for L = K, within a 1/N approximation, 4;, i = 1, 2 are once again unbiased
estimates with finite variance. Simulation results presented in Fig.2 are seen to be in
agreement with these conclusions. The random pattern for actual bias in Fig.2 may be
attributed to computational and other round-off errors and indicates the absence of

1/N term there.

To simplify (36) further, for two equipowered uncorrelated sources, the signal

subspace eigenvalues are given by [12]




-T2.
N=MP(1z|p|)+o , i=12. (38)

With (38) in (36), finally it simplifies into

M (2 + cos2uw,) 1 1

1
Var({;) = —t 5 —=)i=1L2 39
ar(%;) N (-2 | € + T tolgun) ! (39)

These expressions can be used to determine the resolution threshold associated
with two closely spaced sources. For a specific input SNR, the resolution threshold
represents the minimum amount of angular separation required to identify the sources
as separate entities unambiguously. From (35) and (39), since the standard derivation
of 4;,i = 1,2 is substantially larger than their respective bias, it is clear that the reso-
lution threshold is mostly determined by the behavior of the standard deviation. In
order to obtain a measure of the resolution threshold for two closely spaced sources,
consider the situation shown in Fig.3. Evidently, the sources are resolvable if ‘\yl and 7,
are both inside the cones C, and C, respectively or equivalently if |arg (5;)-arg (v;)|
<wy,i =1, 2. Exact calculations based on this criteria turns out to be rather tedious.
But as computation results in Fig.1 show, 4, and 4, are usually within a small circular
neighborhood centered about ~, and ~,. This suggests a more conservative criterion
for resolution; i.e., the sources are resolvable if f’?l and f’?z are both inside the circles ¢
and c, respectively in Fig.3. In that case, the maximum value of the common radii of

these circles is easily shown to be sinw, . Thus, at an SNR satisfying

VVar(3;) =1 sinw, (40)
where / is some positive integer, using (40) we finally have the associated threshold

SNR to be

1/2
M (2 + cos2uw,) 41N (1 - cos 2w, ) sin’w,
£ . = 1+ |1+ . @)
l.k 2 .2 2
2I°N(1 - cos 2w, ) sin‘w, M (2 +cos2w,)(1-|p |7
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This threshold SNR can also be expressed in terms of the "effective angular separa-

tion" parameter A given by [12]
A% = MP32)3.

For closely-spaced sources, M 2w3 < < 1and in that case since

6a>  6a’
cosw, =1-—F + — (42)
d M2 oM
and
2 2,2 4
using (42) and (43) in (41), we have
4 2 237 A2 12
MM M 24I°NA
| e
’ 6I°N | 2A A M

Notice that calculations for Var (5;) in (39) has been carried out for L = K(=2)
case and hence the above threshold expression also corresponds to this least favorable
configuration, which only uses part of the available signal subspace eigenvector infor-
mation in its computations. When higher value of L is used to evaluate f’?,., the
corresponding thresholc xpressions also should turn out to be superior to that in
(41). These conclusions are seen to closely agree with results of simulation presented
in Table 1. Similar threshold comparisons are carried out in Fig.4 for the MUSIC
scheme and the GEESE scheme. In the case of two uncorrelated sources, by equating
the actual bias at the true arrival and middle angles Kaveh et al. has shown the resolu-

tion threshold for the standard MUSIC scheme to be [12]

1/2

1 [20M -2) N .
f’"”’[ K [1+[1+5(M_2)AJ ” “

Fig.4 shows such a comparison using (44) with [ = 2 and (45). From Table 1, the
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corresponding SNR values are observed to have at least 30 percent probability of reso-

lution.

Case 2 : The Most Favorable Configuration (L = M -1)

For L >K, the situation is much more complex and the estimator, 4;,i = 1,2 are
no longer unbiased within 1/N approximation. The exact bias and variance expres-
sions can be computed by proceeding as in Appendix B. These computations have
been carried out for the most favorable configuration (L = M -1) in a single-source

scene as well as a two-source scene and the results are summarized below [18].

A. Single-Source Scene

The mean and variance of the generalized eigenvalue 4, in this case with

E[ |u1|2]=1are

) M +d)d M- )
ERl=v+ N ot o(1/N7) (46)
M -1)
and
2[2(M “1)(1~p, cosw,) + M p, coswl]
Var (§,) = . [l + iz] ro(1/NY.  (47)
NM -1) ¢ ¢

Interestingly enough, the above estimate is biased even within a 1/N approximation.
However the bias and variance values in (46) - (47) are quite small compared to the

variance (34) in a similar situation for the least favorable configuration.

B. Two-Source Scene

Once again, starting with (A.1), after a long series of algebraic manipulations, the
mean and variance of the generalized eigenvalues 4;, i = 1, 2, in two equipowered

uncorrelated source scene can be shown to be

Me' " 1 1
— | Tt Muwy) + T r,(Mw,) (48)

E[3]=]
M-1)%] | € £(1-1p, 1%
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where

~J 2wy —jwy .
,(Mw,;) =p;e +gq;e +r, 3 i=12

and the constants p;, g;,r;;i = 1,2, are as given in Appendix C.

2 2
Var(%,.)=’—’§M’—Al[é—+i] i=12 (49)
N £ £
where
oM
VM. 8Y) = jo2) L 1f, 14 1)1 (, 7 15 95
(M—1)6 M)At S M M?) AZ B VERVE

The 1/N dependence for mean and variance is clearly evident in the simulation results
presented in Fig.6. The associated threshold SNR in this case can be obtained with

the help of (40) and (49) and this gives

1
_ MM, AD 2N (M -1)°A%
§m-17 2 1+11+ 5, 2 (50)
: 61°N M3 M?-2)

For the same source scene and probability of resolution discussed in Fig.4, new
simulation results are presented there for this most favorable configuration. As
remarked earlier, the SNR required to resolve two sources in this case is seen to be
substantially smaller than that in the former case (L = K). In particular, to resolve
two closely spaced sources under identical conditions, in terms of input SNR, the most
favorable configuration seems to require about 12dB less compared to the MUSIC
scheme and about 18dB less compared to the least favorable configuration. Once
again, utilization of all available information in this (L = M -1) case may be attri-
buted to its superior performance. Fig.5 shows a new set of comparisons for another
array length. From these results, it may be reasonably concluded that when all avail-
able signal subspace information is exploited, the proposed algorithm outperforms the

MUSIC scheme.
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IV. Conclusions

This report analyzes a technique for estimating the directions-of-arrival of corre-
lated signals by making use of certain matrices associated with the signal subspace
eigenvectors of the array output covariance matrix. This is based on the well-known
property that in the case of uncorrelated and identical noise field, the subspace
spanned by the true direction vectors is identical to the signal subspace (i.e., the one
spanned by the eigenvectors associated with all, except the lowest repeating eigenvalue
of the array output covariance matrix). Using a first-order asymptotic analysis, it is
shown here that the angle-of-arrival estimator in its least favorable form is unbiased
and has nonzero variance in a two-source scene. Although the estimator in its most
favorable configuration turns out to be biased, the associated resolution threshold in
an equipowered two-source scene is shown to be substantially smaller than that
corresponding to the standard MUSIC scheme. Similar comparisons can be per-
formed in a coherent scene by first employing the standard forward/backward
smoothing technique to decorrelate the signals followed by the method described
here, to estimate their actual arrival angles. Once again, performance comparisons
can be made for a two coherent source scene after working out the asymptotic results

in a similar manner.
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(a) GEESE scheme with L =K
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(b) GEESE scheme with L =M -1
Fig. 1. Simulation results for a mixed-source scene. Three sources are located at 30°,
50° and 70°. The first two sources are uncorrelated and third source is correlated with
the first and second sources with correlation coefficients 0.5+j0.29 and 0.21+j0.43,
respectively. Aten-element array is used to receive the signals. Input SNR is taken
to be 10dB. (number of simulations = 50, number of samples = 100)

— —]




0
. bias
o variance
-1
log(BIAS) . .
log(VAR)
2 .
3 L L 1
1.75 2 225 2.5 2.75

log(Number of samples)

Fig. 2. Bias and Variance for the least favorable configuration (L =K (=2))
Bias and variance vs number of snapshots for two equipowered sources. A ten
element array is used to receive signals from two sources located along 45°, 50° with
common SNR = 5dB. Here L = K (=2) and each simulation consists of 100
independent trials.







Table 1

Resolution threshold and probability of resolution vs. angular separation for two
equipowered sources (K = 2) in an uncorrelated scene. (gnuumber of sensors M =
7, number of snapshots = 100, number of simulations = 100)

angles of angular SNR Prob. of Resolution
arrival separation MUSIC GEESE
8, 6, 2, L=K|L=4|L=M-1
4 0.14
5 0.21
6 033
8 0.54
16 0.12 0.64 0.98
25.00 | 30.00 0.1265 18 0.19 0.19 0.77 1.00
19 0.31 0.20 0.84
20 0.42 0.20 0.89
21 0.63 0.20 0.96
22 0.71 0.25 0.98
23 0.80 0.31
24 0.91 0.40
0 0.27
1 0.31
2 043
3 0.57
9 0.09 0.58 0.99
1009 | 43.00 0.1852 11 0.12 0.16 0.77 1.00
3 12 0.30 0.17 0.83
‘» 13 0.32 0.21 0.91
‘ 14 0.48 0.23 0.94
\ 15 0.73 0.26 0.97
| 16 0.75 0.30 0.99
17 0.84 0.31 1.00
-5 0.19
-4 0.23
-3 0.35
-2 0.51
-1 0.22 0357
0 0.28 0.066 ‘
1 0.08 0.66 098
750005 8000 (1.2676 6 0.29 0.11 (.85 1.00 !
} 7 0.41 0.12 0.87 ’
‘ 8 0.57 016 | 002 |
| G 0.74 022 | 004 |
| | 10 081 0.25 0.07 g
: 11 092 0.30 1.00 ‘
‘ 12 0.99 0.36 {
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.- GEESE scheme with L =K and [ =2 using (42)
30 _ a GEESE scheme simulation with L =K
— GEESE scheme with L =M —1 and ] =2 using (48)
« GEESE scheme simulation with L =M —1
. -- MUSIC scheme using (43)
[ o A MUSIC scheme simulation
20 -
A
INPUT | S~ e
THRESHOLD . o el
SNR (dB) S T
I e
(6/ ) 10 - R, B
~ ~ - e,
\ T~ & -_
— -
\\
0 — \
I e
0.1 0.2 0.3
ANGULAR SEPARATION

Fig. 4 Resolution threshold vs angular separation for two equipowered sources. A
seven element array is used to receive signals in both cases. One hundred snapshots
are taken for each simulation. In each simulation, the associated probability of

resolution is 30 percent.
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1
----- GEESE scheme

0.8 4 —— MUSIC scheme
0.6 —
0.4 -
0.2

0 |

0 10 50

Probability of Resolution vs ASNR (dB)

Fig. 5 Probability of resolution as a function of ASNR for two equipowered sources.

Angular separation (w,-w,) is taken to be 0.1 rad. A five-element array receives

signals and one hundred simulations with 100 snapshots are used to obtain the

probability of resolution for each ASNR. In each simulation, two sources are

considered resolved if simultanegusly |arg(¥;) - arg(~.)| < w,, i = 1, 2 for the

proposed GEESE scheme and Q(w;) < Q(w,,), i = 1, 2 for the MUSIC scheme.
M

Here O (w) = v Iel-Ta(w)|2.
i=K+1
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Fig.6 Bias and variance for the most favorable configuration (L =M -1)
Bias and variance vs number of snapshots for two equipowered sources. A ten
element array is used to receive signals along 60°, 65°. In each simulation, the SNR
taken to be 3dB. Here L =M -1 and each simulation consists of 500 independent
trials.
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Appendix A

Single-Source Scene Analysis

With ’c“., i = 1,2 ---, K representing a certain set of normalized estimated
eigenvectors associated with the signal subspace eigenvectors B8, B,, ', By from

[12, 16, 17], we have

1 M 2
& =k[B + =% w;B1+0(1/N). (A1)
J#i
where
k=1 o 3w, |? A2
i "Zsz:;llwﬁl (A2)
J#Ei

Here Wiis i=12---,M,j=12--- K are zero mean, asymptotically Gaussian

random variables with

A
. rd . .
E[Wij kl] = 251'/( 5], I #] and k fl (A3)
A -X)
and
oY
E[wijwkl] = 26i16jk ;1 f] and k #L (A4)
(’\j _’\;)

In a single-source scene, the eigenvector corresponding to the largest eigenvalue

of the array output covariance matrix is
T 1 -1 -(M - 1)4T
ﬂl =[.Bllyﬂ21,"'aﬂM1] = vM [lvl“l s Ty My ] (AS)
and from (A.1) the estimator for g, is given by

M

& =k (B, + 7%/_—.21 wB ]+ o(1/N%). (A.6)
]j=
j#1
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This gives 4, to be
}3 1By 180 | (AT)

Jfl

M= Eu/6y = (By + \/“ 2_3 w; 1By )| By (1+ 7=

‘»

For | /7= \/— 2 1ﬂ21 /By | << 1, we can simplify (A.7) as

Jfl

il jlﬂzl'BZJ/ﬂ21

i=1j=1
iglj#l

1 M
= ﬂn ,/—E jlﬂlj 1- */—sz j1ﬂ2j/ﬂ21 NEE
f

J
J

‘WII

=t 71—[\71‘11 + %71“21 +o(1/N%) (A.8)
where
M 2
; [ﬂu /B2y = ByiBy /ﬂ21] (A.9)
;
(A.10)

Since the limiting joint distribution of Wiis i=12---,M,j=12 - ,K tend to be

normal with zero-mean and the odd-order moments of zero-mean Gaussian random

variable are zeros, the expected value of T, is zero. Thus,

E3] = + E(Ty] +o(1/N)

E[wilel] [ﬂllﬂb’ﬂzj'/ﬁ;l - BliﬁZj/ﬂlzl] +0(1/N%) (A1)
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With (A.4) in (A.11)
E[#] = +o(1/N?, (A12)
which is an unbiased estimator for ~,.

Further, with the help of (A.8), (A.12), we get

A 1 1. 2
Va’('71) =E[|\/ﬁr11 + -A_IPZII ]

1. .. 2 .
= ELNTul) + e Re(CyT5)] + o (1/N?). (A.13)

The term inside the expected operator can be written as

1 . 2 .
Nl + NYN Re(T')Iy) =

1 M M ) ) )1
N_Z_JI _2_31 Wit [ﬂu/ﬁzl = BBy /ﬂ21] [Blj/ﬁu - ﬂll'BZj/'BZI] +
tfl}fl
p M M M Bk ﬂuﬁyc ﬂuﬂzzﬂzj ﬂliﬂZj )
Re[} & ¥ w wl‘w'[ - H - ] (A.14)
N\/[\_J :;i:;ij:i k1T ﬂzl ﬂ221 ﬂ;l '6221

Once again noticing that the odd-order moments of zero-mean Gaussian random vari-

able are zero, we have

Ay_ 1 M M . 2 21" 2
Var() =8 ¥ E[Wile 1] [51,'/521 ‘ﬁnﬂz‘/ﬂzl] [ﬁlj/ﬁzx _ﬂ11ﬂ2j/ﬂ21] +o(1/N7).

i=1j=1
iFljpl

(A.15)
Using (A.3) in (A.15) and with (A.5) we have
M M

n 1
Var (3,) = _Nkzz '(A" ) )2 | By = By /By '2
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Mx , , ,
= ———— % [18w 1+ 18y I - 2Re(u, B3, 8,) | + 0 (/N (A.16)
N -d) k=2

To simplify this further, notice that

M
S BB =8, i=12 - Mandj=12--,M. (AT
k=1
(A.17) together with (A.5) gives
M 2_ M 2 1
Y Byl =% 1Byl"=1-73f (A.18)
k=2 k=2
and
M * -1
Y BBy =~u /M. (A.19)
k=2
Finally, with (A.18) - (A.19) in (A.16) we have
2M )\ 0°
(A.20)

Var (3,) = +0(1/N?).

N (- d?
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Appendix B

Two-Source Scene Analysis

For two equipowered uncorrelated sources, the eigenvectors in the signal sub-

space of the array output covariance matrix are given by [12]

lll'.*'.ll2
B; = for Si(Mw,)>0,i =1,2 (B.1)
NACEIA))
where
sinMw )
At i -, d A JjM -1y, .
p, =a'(w)a(w,) =e —— Ze Si(Mw,) (B.2)
s Vo2 M sinw, d
and
M-1)/2 M -1)/2
u = oM 9w, u, =MV ag) (B.3)

with a(w) as defined in (4). Using these eigenvectors and with the help of (19)-(21)
and L = K, we form the matrix pencil { B,,B,} and compute the generalized eigen-

values of this matrix pencil; i.e.,

B B By By By =By By =By
-9
By By By By, By =831 By =By,

]

=0 (B4

where ﬂij represents the i" element of the j'h eigenvector. Then, (B.4) can be
simplified as
AY A+ 4,=0 (B.5)

where A, A, A, are the determinants defined as

ﬂZl '322 ﬂll ﬂlZ '811 ﬁlZ
, A, N . (B.6)
ﬂ31 ﬂ32 631 ﬂ32 ﬁZl 622

>

e

>
>

From (B.6) and (B.1) - (B.3), we find the following useful identities

1 M-1/2 M-1/2, -1 -1
)

By = BBy, = BBy, = 2z M (0, -m ) (B
M- p |
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B, = BBy = ByyByy = B (l‘f1 + iy Y (B.8)

Ay = Bybsy = BBy = Ay ﬁ‘fl/'-z—1 (B.9)

Further, using the above relations, the discriminant of (B.5) can be expressed as
A2 2, -1 -1,2
D 2A; -40A, = AJ(u ~ 1y ) (B.10)

Thus, the roots of (B.5S) are given by
-1, -1 -1 -1
Ayl +1p ") 28500 1y )

%=
-1 -1
2851 1y

=p or p, (B.11)

Here, 4, = u, corresponds to + signand v, = g, to — sign.
Now, with the help of the equalities (B.7)-(B.11), we consider the estimated

case. From (A.1), we have the estimated eigenvectors corresponding to the signal

subspace as

M
(B.12)

A 1 2 :

¢ =k [B + =X w;B]1+0(l/N) , i=12 - ,K.
‘/Nj=1 ity

J#i

where &, is defined as (A.2). In a two-source scene, the generalized eigenvalues of the

estimated matrix pencil { E,,E, } given by

€n €12 € €2
=5 (B.13)
€n €2 €31 €3
. A JO . .
Sincee; =€, e"',i =1,2, -+ ,K, the above equation reduces to
A A A A A A
Ciu =€ Cp—7Cp
A 2 A A
= Aﬁ -AA+A;-0 (B.14)

In (B.13) and (B.14), e.. and é;; represents the i" elements of the estimated eigen-
if i p =




-90-
vectors e. and ’c‘j , respectively. Following (B.14), define .&1, 82 33

A
&y €y

&y €y &y Cp
A 8 , A, & , A, 8 . (B.1Y)
&y €3 &y €3 £y €y

To fine a first-order approximation for 31, 32 and 33, we begin with the interele-
ment multiplication of &,i = 1,2. This can be written as

A 1 [M
plcq2 _k1k2 ﬂplﬂq2+ vN jgl

EWZ q pl
j#l

Jf2
1 M M 5
+ N E 2 Wy W0 kﬁql +0(1/N7). (B.16)
=11=1
kr1in2
With (B.16) in (B.15), we have
A =8y65 ~ 656y
1 [ M
=k k|8 N E 1108 B3y = B3 By) + 21 283 By1 = By B31)
] =
1#1 j#2
1 M M 2
+ N 2 2 Wi W, 2B By —-ﬂ3kﬂy) +0(1/N7). (B.17)
=1/=1
f 12
Defining
Uu ﬂ:kﬂl _ﬂjkﬂil (B.18)
(B.17) can be written as

(B.19)
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where
M M
Ty = ‘21 Wi1lyjz * _21 Wiz Apj (B.20)
] = j=
J#1 jFE2
M M
Ty=3 ¥ "aWinbuu - (B.21)
k=11=1
kEll#2
Similarly, we have
[Az + 1‘12 + 13/1‘22} + 0(1/N?) (B.22)
A = 1 1 N2
Ay =kyky| Ay + \/‘ﬁrls + NTy| +0o(1/N7) (B.23)
where
M
E Ao 21 1283151 (B.24)
# JE2
M M
E j1Bnj2 * '21 WiaBaiji (B.25)
=1 Jj=
J#1 J#2
M M M M .
2 2 We W2l 5 Ty = kEI 121 Wi Wi By - (B.20)
f f k;11;2

The generalized eigenvalue of (B.14) within a first-order approximation can be

found by using (B.19)-(B.26). To see this, let

I
Nt N

ne>

i =123, (B.27)

and with (B.14), (B.19), (B.22) and (B.23), the generalized cigenvalues have the form




1/2

(8,+T) = (A2 - 48,8, + 24,1, +T7 ~4(AT, + AT +T;Ty)

= (B.28)
2A4,(1+T,/4)

Here, T; defined in (B.27) represents the perturbation of 3,. from A; and for large N,

from (B.19) and (B.27) noticing that |T,/A,| << 1, we can rewrite (B.28) as

1/2
2 -
20T, +T) —4(AT  + AT, +1 I3 ]] J

1
j = [(A2+ L) = [D[l +

24, D
r, TI?
1 1
x|1-—+— (B.29)
A1 A12

where D is given by (B.10). Once again, for large N we have

2
20T, + T; - &AL, + ALy + T,Ty)

<1 (B.30)
D
which allows one to further approximate (B.29) as

A, VD r, T}
JjE=——— |1 - — + -
24, A Al

VDT, + [24,F, + 7 = &AL, + ATy + T\Ty)] r, T}

+ 1l-—+ —

4A VD A A

(28,1, + T - 4(AT, + AL, +T,T) I r, T}
T 1

+
|
+

(B.31)
16a,DVD A Al
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Neglecting terms formed by combinations of triple products of T}, I, and T;, (B.31)
reduces to

2
) 1 I‘l (VD = Az)I‘2 F 2(A3F1 + A1F3)
e 1-—+ ) +

A Af 2D
- 2
(VD £A)TT, F2AATT+AT,/4) (AT, -2A,T; -28 ;)
- F (B.32)
2D 4A,DVD

Finally, using (B.27) and retaining only those terms of order greater than or equal to

1/N, we have
A~ 1 1 1
where
e (VD AT, F AAL, +A[L,)
o, =-—T,+ (B.34)
A 20VD
and
~; %, (VD % ATy, F 2AL,, +AT,,)
$y =-—"TI, + I+
A A12 ZAI\/B

- 2 2 2

(VD £A)T T FAATT+ATH/4) (AL, =25T), 24T ;)
P— + -
2D aA,DVD

(Y

(B.33)
®,; and &,; in (B.34) - (B.35) can be further simplified with the help of (B.7)-(B.11).

Fori = 1and v, = u, we have

1 -
@, = - [”22F11 =l + Tyl (B.36)

Ayl -y )

and
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2 2
V'zzrzl ~ WLy + Ty “zzru = wI' Ty, + Tp/4
- +

A3(”'1-1 - ’“‘2-1) A;;zﬂl- 1#‘2—1(1‘1-1 - I"z-l)

Q21 -

[("‘1-1 + F‘z_l)rlz -2, - 2/‘1- 1”2_ T 13]2

- 2 -1 -1, -1 1,3 (B37)
By By~ )
Similarly, for{ = 2 and v, = u, we have
1
@, = 1 [“fr 1~ 4l *+ Tyl (B.38)
Aypy  — )

2 2
“12F 2~ Ty + Ty qu‘ 1~ #yTy + T/4

Ay =1y ) Aguy ey Gy =iy )

®n

[(“1_1 + ”z—l)ru =20y, -2 1”'2_ T 13.]2
. (B.39)

2 -1 -1, -1 -1.3
Bapy wy (0 —my )

From now on, with the statistical properties derived in [16, 17], we compute the
mean and variance of the estimated generalized eigenvalues. Consider the first gen-

eralized eigenvalue, 4,. Then, from (B.33), the expected value of 4, is

E[3,] =, + -\/LA—,-E[QH] + E[8y] +o(—N—\l/-—A7). (B.40)

With (B.20), (B.24) and (B.25), it is easy to verify that E[®,,] consists of the first-

order moments of Wi which gives E[®,,] = 0 and hence

E[3) =% + WE[By) + 0(5 )

E[/‘ZZF21 = Iy + Tyl E[”‘27T121 — Iyl + F122/4]
= 71 — ~ ~ + _ _ N _
N Ay -y ) N Adu g e -y )

E [[(“1.1 + ”2-1)F12 — 20y~ 2u 11‘2_ 11,13]2]

1
- +0( \/—). (B.41)
-1 -1, - - N
4NA32;11 1”'2 10‘1 1_”_2 1)3 N

—
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With (B.21), (B.26) and (B.26), the terms inside the first expected operator can be

written as

M M )
l"zzrzl —mly + Ty = kEI 121 We Wi Bosy = BB gy + Bygy) - (B42)
kELIE2

With (A.4) in (B.42) we also have

M M )
E[”zzrzl =ty + Tpsl = kZ)l IZDIE[wklwlZ](”‘ZABkI gy + Apy)
kEllg2

AIAZ 2
= (438231 = mpBy3py + Bipy) =0 (B43)

=)

since, from (B.18), (B.7) -(B.9), it is easy to show that A,,,, = —A, A ;,; = -4, and
By = ~Bs
Also, with (B.20) and (B.24), we can write

M M
#Tyy ~Tp/2 = '21 Wi (1 Bip = By3j5/2) + '21 Wip(yBgpiy = B3y1/2)
J: ]=

JE1 j#2
M
= ,23 [le (”QA23]2 - A13j2/2) + sz(;l.zA:le - A31j 1/2)] (B44)
] =
since from (B.18)
A,.jk, =0 for k=1I. (B.45)
Hence, together with (B.44) and (A.4), we can easily show that
E 1T, = wTy Ty, + Tp/4] = 0. (B.46)

Similarly, for the exnected valne of the last term in (B.39), with (B.20), (B.24)

and (B.25) we can write
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-1, -1 -1 -1
(8 +py Wy =2 —2p py T3

_ M [ -1 -IA 2 -1 —IA ]
- ,21 wig((y 0y VA3 = 28030 =20y 1y By
J=
jrl
M
-1, -1 -1 -1
* _21 WIZ[("I tHy )y~ 2y 20 A2lj1]
]-‘-
jE2

M -1, -1 -1 -1
= 23 [le[(l‘l Fa VA3 = 2035 = 28 1y AleZ}
iz

-1 -1 -1 -1
* wﬂ[("l iy Wy~ 2y~ 20 Azm]] (B.47)

Here, once again we use the fact of (B.45). Then, with (B.47) and using (A.4), it can

also be shown that
E[ 1" + oy )y = 20y, - 207y T | = 0. (B.48)
Finally, with (B.43), (B.46) and (B.48) in (B.39), we obtain
E[#] = +o(--—-——1 ) (B.49)
WENTOUNYN '

Thus, within a first-order approximation, the sample generalized eigenvalue 4, is an

unbiased estimator for v,.

With the help of (B.33), (B.36), (B.20), (B.24)-(B.25), and some algebra, it is

easy to compute their variances. Now, with (A.3)

A 1 2
Var(3;) = ET|2,]7]




.97-
1 ]
- 2,71 _,~1)2 21 EIE[ i1 Wi
— i =
N Ay "y | e
M M . . M M e .
+ 3 2 wwip LI + E EE[W.z n ML+ 38 2 Wi ML
i=1j=1 i=1j=1 i1/
iFlje2 iF2jrl P22
1 M AN AN
- —————— |y %+ s — 12| B50)
NA uy "~y “1 (O - A) i= 1('\2 XY
where
2,
I = Byjy ~ A, + Ay (B.51)
2
II; = 15 B5i1 ~ IBsgyiy + By (B.52)

Also, from the definition of A‘.jk, in (B.18) we notice that / f in (B.51) is zero for j =2
and IIj in (B.52) zero for j = 1. Therefore, withA; =, = -+ =1, = o, (B.50) is

simplified to

/\02 02
1 M 1 2 2
Var(7,) = ; 2 » TARE: — |II1*| (B.S3)
N|A3I Il"q ﬂ'z l =3 (Al'o) (’\2-0)

Now, we evaluate I; and I/, from (B.18) and (B.1). First,
2
i = m58055 = 181302 + Bppip
= ”'zz(ﬂziﬂsz = B3iBay) — (B B3y = By B1y) + (B By, — ByBy))

“’1(M - 1)/2“2201'2-1 _ “1-1)
= o ' '8y ~ (" + w8y + By (B.54)

VM (1= |p])
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Also, from (B.52)
2
II; = By = gy + By
1 -1

M T - Y
= 7' "By = (g + w8y + By). (BSS)

V2M (1 +Tp, 1)
(B.53) together with (B.54), (B.S5) gives
A 1 Mo’ 1 o 1
Var('71) = +

N|A3|2 (1\1—02)2 2M(1-p|) (1\2—02)2 2M(1+ [p,[)
M 14 -1, -1 2
Y e my By =y + oy By + Ay (B.56)
i=3

Replacing A, with (B.7), this gives

M ’\1"2 )‘202
Var (3,) = s (G VY i S CRl PR s
ﬂvll‘l Ky I ()‘1_0) (Az-o')
M 11 -1 -1 2
Y lu g By~ (uy +u DBy + By 1" (B.57)
i=3

To simplify this further, notice that

M
S BBy =6, i =12 Mandj =12 M. (B.58)
k=1

Fori =j =1, (B.58) together with (B.1) gives

M 2 - -M -
5 1y 1P =1 - —————[1 - g |Re(u™ "2 ¥ "] (B9
€3 M(1- 1o, 1)

Similarly,
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M 2 2 M-3)2 -(M-3)/2
> 1Byl =1- —[1 - 1o, IRe(u™ ", | ®s0)
k=3 M(1-|p|%)

and

M 2 - —(M -
)Y |ﬂ3k|2=1————2'[1—|ps|Re(u1(M M M) (B
k=3 M(1-|p|)

Also, fori = 1,j = 2 we have

-M-3)/2 M~-1)/2 M -1)/2 - - 35)2
M . (uy + 1) = oy | Guy M 72 M D2y 2D/, ST 5
Y Bubyu = - 5
k=3 M(1-1p %)
(B.62)
-M -5)/2 (M -3)/2 M -3)/2 -(M-5)/2
M . (i + 1) = Loy | M 2 M =2y M9 G972
Y Byby = - 5
k=3 M1 - 1o, (%)
(B.63)
and

-2

-M~-1)/2 (M -5)/2 M ~5)/2 -(M-1)/2
(u; O = 0/2, M -9)/2 |01 -5)/2, =01 172

) = o | (uy

M
Y ByuBy = - 5
k=3 M1 -|p ")
(B.64)
With (B.59) - (B.64), the last term in (B.57) can be written as

-1 -1

M -1 -1 2
¥y By -y +uy By + By
i=3

M - -— - -
=5 18017+ 17 + g 18y 17 + 1851 —2Rel, 'y (g + 18,85

+ (a7 oy DBy B - w63

=4 + 2Re(ul-1p.2) . (B.65)
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Finally, using (B.65), (B.57) reduces to
M @+Re(u ') A

Y
Var () = ~ —(1+1p, N+ = (1= 15, )| (B6)
2N (1-Re(p; ') LOy-0) (=0

The mean and variance of 4, are identically the same as that of 4, and the covariance

between 4, and 4, is given by

M o* (2+Re(u ')

A oA M-5)/2 -M-5)/2
Cov(3,,9,) = - M -5)/ ”2( )

2N (1-Re(p; ')

e —-1a ) (B.67)
— o A+lp )T (- p 1)} -
(O, -0%)’ (A-)?
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Appendix C

Bias Constants in a Two-Souce Scene

p, = (3M’-12M*+15M -6) +

(0.704M° -4.206M* +8.793M> - 4.195M* ~27.194M +81.592) > +

(0.0642M 7 -0.42M° +0.945M° + 0.377M* - 6.937M> + 53.93M >
~61.517M +12.417)w; + 0(w))
g, = (3M*-18M°+39M>-36M +12) +
(0.2M°-2.6M° +11.45M* ~29.3M° +38.95M > + 46.5M -212.98) > +
(0.078M8-0.804M 7 +3.54M° -9.480M° + 18.66M * - 33.37M> + 61.32M*

~133.61M +199.34)w; + 0 (w])
r = (=3M°+15M>~27M%+21M -6)) +
(-02M°+1.9M° -6.83M* +14.00M> ~ 10M* - 69.1M +200.63 ) +
( =0.053M%+0.492M7 - 1.884M° + 1.535M° + 10.81M * - 45.02M> + 78.99M°
~26.29M ~80.31)w; + 0 (w)

p, = (6M>-24M*+30M - 12) +
(~0.602M° +3.606M* - 14.406M" +33.601M >~ 107.308M +229.2)w> +

(0.2572M " - 1.89M° +6.235M° - 10.309M * - 0.697M> + 50.68M*

~117.78M +70.12)w] + o (w)

—————————
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q, = (6M*-36M>+78M*~72M +24) +
(-0.602M°+3.806M° -9.115M* + 11.41M> ~27.6M >+ 186M -445.96)w> +

(0.173M8 - 1.702M 7 +3.988M° - 17.221M° + 30.96M* - 64.43M> + 144.98M>

~264.61M +398.12)w} + 0 (w})

r, = (-6M*+30M°-54M>+42M - 12) +
(0.602M°-3213M° +5.51M* ~3.833M° +42.233M 7~ 116.25M +493.5)w, +

(-0.173M8+ 1.446M 7 - 5.035M° +5.226M° + 17.42M* -81.96M + 167.84M"

~134.45M - 10228)w! + 0 ()




(3]

(4]
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